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Abstract:
This paper
provides an
introduction
to and an
overview of
type-2 fuzzy
sets (T2 FS) and
systems. It does
this by answering
the following ques-
tions: What is a T2
ES and how is it dif-
ferent from a T1 FS?
Is there new terminol-
ogy for a T2 FS? Are
there important repre-
sentations of a T2 FS and,
if so, why are they impor-
tant? How and why are T2
FSs used in a rule-based sys-
tem? What are the detailed
computations for an interval
T2 fuzzy logic system (IT2
FLS) and are they easy to under-
stand? Is it possible to have an
IT2 FLS without type reduction?
How do we wrap this up and
where can we go to learn more?
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Introduction
was recently asked “What’s the difference between the
popular term fizzy set (FS) and a type-1 fuzzy set (T1 ES)”?
Before T answer this question, let’s recall that Zadeh intro-
duced FSs in 1965 and type-2 fuzzy sets (T2 FSs) in 1975
[12]. So, after 1975, it became necessary to distinguish between
pre-existing FSs and T2 FSs; hence, it became common to refer
to the pre-existing FSs as “T1 FSs.” So, the answer to the ques-
tion is “There are different kinds of FSs, and they need to be
distinguished, e.g. T1 and T2.” T will do this throughout this
overview article about T2 FSs and T2 fuzzy systems.

Not only have T1 FSs been around since 1965, they have
also been successfully used in many applications. However,
such FSs have limited capabilities to directly handle data
uncertainties, where handle means to model and minimize the
effect of. That a T1 FS cannot do this sounds paradoxical
because the word fuzzy has the connotation of uncertainty.
This paradox has been known for a long time, but it is ques-
tionable who first referred to "fuzzy" being paradoxical, e.g.
[3], p- [12].

Of course, uncertainty comes in many guises and is inde-
pendent of the kind of FS or methodology one uses to han-
dle it. Two important kinds of uncertainties are linguistic and
random. The former is associated with words, and the fact
that words can mean different things to different people, and the
latter is associated with unpredictability. Probability theory is
used to handle random uncertainty and FSs are used to han-
dle linguistic uncertainty, and sometimes FSs can also be
used to handle both kinds of uncertainty, because a fuzzy
system may use noisy measurements or operate under ran-
dom disturbances.

Within probability theory, one begins with a probability
density function (pdf) that embodies total information about
random uncertainties. However, in most practical applica-
tions, it is impossible to know or determine the pdf; so, the
fact that a pdf is completely characterized by all of its
moments is used. For most pdfs, an infinite number of
moments are required. Unfortunately, it is not possible, in
practice, to determine an infinite number of moments; so,
instead, enough moments are computed to extract as much
information as possible from the data. At the very least, two
moments are used—the mean and variance. To just use first-
order moments would not be very useful because random
uncertainty requires an understanding of dispersion about the
mean, and this information is provided by the variance. So,
the accepted probabilistic modeling of random uncertainty
focuses, to a large extent, on methods that use at least the first
two moments of a pdf. This is, for example, why designs
based on minimizing mean-squared errors are so popular.

Just as variance provides a measure of dispersion about
the mean, an FS also needs some measure of dispersion to
capture more about linguistic uncertainties than just a sin-
gle membership function (MF), which is all that is obtained
when a T1 FS is used. A T2 FS provides this measure of
dispersion.

A T2 FS and How It is Different From a T1 FS

What is a T2 FS and how is it different from a T1 FS? A T1 ES
has a grade of membership that is crisp, whereas a T2 FS has
grades of membership that are fuzzy, so it could be called a
“fuzzy-fuzzy set.” Such a set is useful in circumstances where it
is difficult to determine the exact MF for an FS, as in modeling
a word by an FS.

As an example [6], suppose the variable of interest is eye con-
tact, denoted x, where x €[0], [10] and this is an intensity
range in which 0 denotes no eye contact and 10 denotes maxi-
mum amount of eye contact. One of the terms that might
characterize the amount of perceived eye contact (e.g., during an
airport security check) is “some eye contact.” Suppose that 50
men and women are surveyed, and are asked to locate the ends
of an interval for some eye contact on the scale 0—10. Surely, the
same results will not be obtained from all of them because
words mean different things to different people.

One approach for using the 50 sets of two end points is to
average the end-point data and to then use the average values
to construct an interval associated with some eye contact. A trian-
gular (other shapes could be used) MF, M F(x), could then be
constructed, one whose base end points (on the x-axis) are at
the two end-point average values and whose apex is midway
between the two end points. This T1 triangular MF can be
displayed in two dimensions, e.g. the dashed MF in Figure 1.
Unfortunately, it has completely ignored the uncertainties
associated with the two end points.

A second approach is to make use of the average end-point
values and the standard deviation of each end point to establish
an uncertainty interval about each average end-point value. By
doing this, we can think of the locations of the two end points
along the x-axis as blurred. Triangles can then be located so
that their base end points can be anywhere in the intervals
along the x-axis associated with the blurred average end points.
Doing this leads to a continuum of triangular MFs sitting on
the x-axis, as in Figurel. For purposes of this discussion, sup-
pose there are exactly N such triangles. Then at each value of
x, there can be up to N MF values (grades),
MF;(x), MF>(x), ..., MFn(x). Each of the possible MF
grades has a weight assigned to it, say wyq, Wy, ..., Wiy (s€€
the top insert in Figure 1). These weights can be thought of as
the possibilities associated with each triangle’s grade at this value
of x. Consequently, at each x, the collection of grades is a
function {(M F;(x), wy;), i =1, ..., N } (called secondary MF).
The resulting T2 MF is 3-D.

If all uncertainty disappears, then a T2 FS reduces to a T1
ES, as can be seen in Figure 1, e.g. if the uncertainties about the
left- and right-end points disappear, then only the dashed trian-
gle survives. This is similar to what happens in probability, when
randomness degenerates to determinism, in which case the pdf
collapses to a single point. In brief, a T1 FS is embedded in a T2
FS, just as determinism is embedded in randomness.

It is not as easy to sketch 3-D figures of a T2 MF as it is
to sketch 2-D figures of a T1 MF. Another way to visualize a
T2 FS is to sketch (plot) its footprint of uncertainty (FOU) on
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FIGURE 1 Triangular MFs when base end points (/ and r) have uncertainty intervals associated with them. The top insert depicts the secondary
MF (vertical slice) at x’, and the lower insert depicts embedded T1 and T2 FSs, the latter called a wavy slice.

the 2-D domain of the T2 FS, and this is easy to do. The
heights of a T2 MF (its secondary grades) sit atop its FOU. In
Figure 1, if the continuum of triangular MFs is filled in (as
implied by the shading), then the FOU is obtained. Another
example of an FOU is shown in Figure 2. It is for a Gaussian
primary MF whose standard deviation is known with perfect

8 10

FIGURE 2 FOU for a Gaussian primary MF whose mean varies in the
interval [m,, m,] and whose standard deviation is a constant.
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certainty, but whose mean, m, is uncertain and varies any-
where in the interval from m; to m,. The uniform shading
over the entire FOU means that uniform weighting (possibili-
ties) is assumed. Because of the uniform weighting, this T2 FS
is called an interval type-2 FS (IT2 ES).

Almost all applications use IT2 FSs because, to date, it is only
for such sets (and systems that use them) that all calculations are
easy to perform. Additionally, although general T2 FSs have
more design degrees of freedom (parameters) than IT2 FSs, no
one knows yet how to best choose their secondary MFs. So, at
this time there has been a logical progression from T1 to IT2.
Although most applications use I'T2 FSs, there is research under-
way about general T2 FSs and systems, e.g. [1] and [10].

New Terminology for a T2 FS

Is there new terminology for a T2 FS? Just as probability has much
new terminology and definitions that must be learned in order
to use it as a model of unpredictability, a T2 FS has new termi-
nology and definitions that must be learned in order to use it as
a model of linguistic uncertainty. New terms (some of which
have already been used above) and definitions are summarized
in Box 1. Note that in order to distinguish a T2 FS from a T1
FS, a tilde is used over the former, e.g. A Note, also, that an



BOX 1. New Terms for T2 FSs

Term Literal Definition (see Fig. 1 for many of the examples)

Primary variable— € X The main variable of interest, e.g. pressure, temperature, angle

Primary membership— J, Each value of the primary variable x has a band (i.e., an interval) of MF values, e.g.
Jy = [MFy(x'), MFy(X")]

Secondary variable— u € J, An element of the primary membership, J,, e.g. us, ..., uy

Secondary grade— f,(u) The weight (possibility) assigned to each secondary variable, e.g. fy (u1) = Wy 1

Type-2 FS—A A three-dimensional MF with point-value (x, u, ua»(x,u)), where x e X,u € J; , and
0 < pan(x,u) < 1. Note that f,(U) = g% (X, U)

Secondary MF atx AT1 FS atx, also called a vertical slice, e.g. top insert in Figure 1

Footprint of Uncertainty of The union of all primary memberships; the 2-D domain of A; the area between UMF (A*) and

A — FOU(A%) LMF (A”), e.g. green shaded regions in Figure 1

Lower MF of A — LMF(A%)or ges ) The lower bound of FOU (A”) (see Figure 1)
Upper MF of A — UMF(A®)or 7i(x) The upper bound of FOU(A™) (see Figure 1)

Interval T2 FS A T2 FS whose secondary grades all equal 1, described completely by its FOU, e.g. Figure 3;
A = 1/FOU(A™) where this notation means that the secondary grade equals 1 for all
elements of FOU (A™)

Embedded T1 FS— Ac(x) Any T1 FS contained within A that spans Vx € X; also, the domain for an embedded T2 FS, e.g.
the wavy curve in Figure 3, LMF(A%) and UMF(A™)

Embedded T2 FS— Ae(x) Begin with an embedded T1 FS and attach a secondary grade to each of its elements, e.g.
see lower insert in Figure 1

Primary MF Given a T1 FS with at least one parameter that has a range of values. A primary MF is any one

of the T1 FSs whose parameters fall within the ranges of those variable parameters, e.g. the
dashed MF in Figure 1

IT2 FS is completely characterized
by its 2-D FOU that is bound by a i

lower MF (LMF) and an upper 14 - _____
MF (UMF) (Figure 3), and, its

embedded FSs are T1 FSs.
UMF (4) & UMF (A)

Important Representations
ofaT2Fs

Are there important representations of
a T2FS and, if so, why are they

important? There are two very

Embedded FS

LMF (A)

FOU (A) FOU (A)

important representations for a

» X
T2 ES; they are summarized in
Box 2. The vertical-slice repre- FIGURE 3 Interval T2 FS and associated quantities.
sentation is the basis for most
computations, whereas the wavy-
slice representation is the basis for BOX 2. Two Very Important Representations of a T2 FS
most theoretical derivations. The
latter is also known as the Name of Representation Statement Comments
Mendel-John Representation Theo- Vertical-slice representation A = | Verticalslices (x) Very useful for computation
rem (RT) [8]. For an IT2 FS, both e
representations can also be inter- Wavy-slice representation A = JEmbeddedT2FS (j)  Very useful for theoretical
preted as covering theorems because v derivations; also known
the union of all vertical slices and as the Mendel-John
the union of all embedded T1 Representation Theorem [8]

FSs cover the entire FOU.
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Although the RT is extremely useful for theoretical devel-
opments, it is not yet useful for computation because the num-
ber of embedded sets in the union can be astronomical.
Typically, the RT is used to arrive at the structure of a theoret-
ical result (e.g., the union of two IT2 FSs), after which practical
computational algorithms are found to compute the structure.

For an IT2 FS, the RT states that an IT2 FS is the union of
all of the embedded T1 FSs that cover its FOU. The impor-
tance of this result is that it lets us derive everything about IT2 FSs
or systems using T1 FS mathematics [9]. This results in a tremen-
dous savings in learning time for everyone.

Type-2 Fuzzy Logic Systems (FLS)

How and why are T2 FSs used in a rule-based system? A rule-
based FLS [5, Ch. 1] contains four components—rules, fuzzifi-
er, inference engine, and output processor—that are
inter-connected, as shown in Figure 4. Once the rules have
been established, a FLS can be viewed as a mapping from
inputs to outputs (the solid path in Figure 4, from “Crisp
inputs” to “Crisp outputs”), and this mapping can be expressed
quantitatively as y = f(x). This kind of FLS is widely used in
many engineering applications of fuzzy logic (FL), such as in
FL controllers and signal processors, and is also known as a

fuzzy controller or fuzzy system.

Type-2 FLS

Output Processing

Rules are the heart of an FLS. They
may be provided by experts or extracted
=3 from numerical data. In either case, the
rules can be expressed as a collection of

Input Sets Output Sets

is its consequent. FSs are associated with
terms that appear in the antecedents or

| |
I
| : Crisp IF-THEN statements, e.g. IF the total
: Rules Defuzzifier E Outputs average input rate of real-time voice and
| Y | video traffic is a moderate amount, and the
| Crisp : total average input rate of the non-real-
! Inputs »  Fuzzfier Type-Reducer |~—:—> time data traffic is some, THEN the con-
DX 3 1 Type-Reduced fidence of accepting the telephone call is
| o sl a large amount. The IF-part of a rule is its
| Fuzzy Y Fuzzy E antecedent, and the THEN-part of a rule
: » Inference \

I
| |
I

________________________________________ o consequents of rules, and with the inputs

to and output of the FLS. MFs are used

FIGURE 4 Type-2 FLS.

to describe these FSs, and they can be

BOX 3. How T1 FS Mathematics Can Be Used to Derive IT2 FS Fired-Rule Outputs [9]

In order to see the forest from the trees, focus on the single rule “IF x is F' THEN y is G'.” It has one antecedent and one consequent
and is activated by a crisp number (i.e., singleton fuzzification). The key to using T1 FS mathematics to derive an IT2 FS fired-rule out-
put is a graph like the one in Figure 5. Observe that the antecedent is decomposed into its nr T1 embedded FSs and the consequent
is decomposed into its ng T1 embedded FSs. Each of the n x n¢ paths (e.g., the one in red) acts like a T1 inference. When the union

is taken of all of the T1 fired-rule

Gl Bl

\ \ GZ - ) B-('i-nG) ) of the antecedent and consequent
FOUs. How this kind of graph and
nF /'

G, ———» Bing1) (V)

sets, the result is the T2 fired-rule

Consequent T1 Fired Rule Sets set. The latter is lower and upper

G; —_— g N bound, because each of the T1
AntecedM fired-rule sets is bound. How to
, f—— G — BigW actually obtain a formula for B(y) is

explained very carefully in [9], and

Rule Set

)W) B(y) only involve lower and upper MFs

;
Input / / Ge > B(”)(y) ) just requires computing these
e o > Hetpies lower and upper bounds—and they

its associated analyses are extend-

\ Goe Bgng ) ) ed to rules that have more than

one antecedent, more than one

FIGURE 5 Graph of T1 fired-rule sets for all possible ng = ng x ng com
T1 antecedent and consequent FSs, for a single antecedent rule.

24 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2007

rule, and other kinds of fuzzifica-
tions is also explained in [9].

binations of embedded



Box 4. Pictorial Descriptions for T1 and T2 Inferences

Figure 6 depicts input and antecedent operations for a two-antecedent single-consequent rule, singleton fuzzification, and minimum t-
norm when x; = X, ur, (x}) occurs at the intersection of the vertical line at x; with wf, (x1); and, when x, = X}, 115, (x}) occurs at the inter-
section of the vertical line at x, with 1, (x,). The firing level is a number equal to min [uf, (X}), 11r, (x3)]. The main thing to observe from
this figure is that the result of input and antecedent operations is a number—the firing level f (x'). This firing level is then t-normed with the
entire consequent set, G. When 1 (y) is a triangle and the t-norm is minimum, the resulting fired-rule FS is the trapezoid shown in red.

Figure 7 shows the comparable calculations for an IT2 FLS. Now when x; = x; , the vertical line at x; intersects FOU(F,*) every-
where in the interval [EF% &), i (X )l; and, when x, = x}, the vertical line at x}, intersects FOU (F3*) everywhere in_the interval
[&ﬁ (x3), itg, (x5)]. Two fiting levels are then computed, a lower firing level, f(x), and an upper firing level, f(x), where
fox'y = min[gF% (X7 o (X3)] and f(x') = min[ﬂp;m(x;), ,L_l,p;/n(X,z)]. The main thing to observe from this figure is that the result of input
and antecedenit operatfons is an interval—the firing interval F(x'), where F(x') = [f(X'), f(x)]. f(X") is then t-normed with LMF(G™)
and f(x') is t-normed with UMF(G*). When FOU(G") is triangular, and the t-norm is minimum, the resulting fired-rule FOU is the
red trapezoidal FOU.

' Wr (X1)  Firing Level Calculation
M, (x)
Rule-Output Calculation
............ \ Ha (07
> X AN
X'1 /I \\
1 g \,  Fired-Rule FS,
i, (X2) i ), £ ¥ U ()
/ ’
U, (X'2)
> Xo
X'2

FIGURE 6 T1 FLS inference: from firing level to rule output.

Firing Interval Calculation: F(x') = [f(x), f(x)]
FOU (F)) g, (x'4)
BE, (x9) ‘ Rule Output Calculation
min
: > X, X FOU (G)
X ! Fired Rule
‘ min | FOU-(B)
__________ o
FOU (Fy) o
HE, (X'2)
g, (X'2)
S
X2

FIGURE 7 IT2 FLS inference: from firing interval to rule output FOU.
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BOX 5. A comparison of COS defuzzification and TR

Center-of-Sets (COS) Defuzzification, y os(X)

1. Compute the centroid of each rule's consequent T1 FS. Call it c/(/ = 1, ..., M)

2. Compute the firing level for each (fired) rule. Call it f/(/ = 1, ..., M)

M M
3. Compute yeos(X) = c’f’/z fl
= =

Center-of-Sets (COS) TR, Y os(X)

1. Compute the centroid of each rule's consequent IT2 FS, using the KM algorithms (see Box 6). Call it [/, y/1 (I = 1, ..., M)
2. Compute the firing interval for each (fired) rule. Call it [f’ , f_’} d=1,...M
3. Compute Yeos(X) = [y/(X), yr(X)], where y;(x) is the solution to the following minimization problem, y;(x) =

min

vlelf f1] | 1=

velelf fi | 1=1 =1

M M
|: yif! / > f’} , that is solved using a KM Algorithm (Box 6), and y;(x) is the solution to the following maximization problem,
1 =i

M M
yr(X) = max [Z ylf! / > f’}, that is solved using the other KM Algorithm (Box 6).

BOX 6. Centroid of an IT2 FS and its computation

Consider the FOU shown in Figure 8. Using the RT, compute the
centroids of all of its embedded T1 FSs, examples of which are
shown as the colored functions. Because each of the centroids is a
finite number, this set of calculations leads to a set of centroids
that is called the centroid of B, C(B®). C (B%) has a smallest value
¢; and a largest value ¢, i.e. C(B*) = [¢;(B*), ¢,(B*)]. So, to com-
pute C(B”), it is only necessary to compute ¢; and ¢;. It is not pos-
sible to do this in closed form. Instead, it is possible to compute ¢,

and c, using two iterative algorithms that are called the Karnik-
Mendel (KM) algorithms.

Note that ¢; = min (centroid of all embedded T1 FSs in FOU (B*)).
Analysis shows that:

L ~ N -
> YiUMFBly)+ > yiLMF(Bly;)
. Rt

ag=cl = ':]L - ':if -
Y UMFBly)+ Y. LMF(Bly;
i=1 i=Lt1

One of the KM algorithms computes switch point L (see Figure 9).
Note also that ¢, = max (centroid of all embedded T1 FSs in
FOU (B™)). Analysis shows that:

R N
Y ViLMFBly+ Y yiUMFBly))
i=R+1

& =G (R) =% 2
> LMFBly)+ Y UMF@Bly)

i=1 i=R+1

>y The other KM algorithm computes switch point R (see Figure 10).
Derivations and statements of the KM algorithms are found, e.g., in
FIGURE 8 FOU and some embedded T1 FSs. [2, pp. 204-207] and [5, pp. 258-259 or pp. 308-311].
FOU (B) 1 + FOU (B)
1 _________________ g g g S
T : >y : >y
L R

FIGURE 9 The red embedded T1 FS is used to compute ¢ (L).
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FIGURE 10 The red embedded T1 FS is used to compute ¢,(R).



either T1 or T2. The latter lets us quantify different kinds of
uncertainties that can occur in an FLS.

Four ways in which uncertainty can occur in an FLS are:
(1) the words that are used in antecedents and consequents of’
rules can mean different things to different people; (2) conse-
quents obtained by polling a group of experts will often be dif-
ferent for the same rule, because the experts will not
necessarily be in agreement; (3) only noisy training data are
available for tuning (optimizing) the parameters of an IT2 FLS;
and (4) noisy measurements activate the FLS.

An FLS that is described completely in terms of T1 FSs is
called a T1 FLS, whereas an FLS that is described using at least
one T2 FS is called a T2 FLS. T1 FLSs are unable to directly
handle these uncertainties because they use T1 FSs that are
certain. T2 FLSs, on the other hand, are very useful in circum-
stances where it is difficult to determine an exact MF for an
FS; hence, they can be used to handle these uncertainties.

Almost all applications use IT2 FSs
because all calculations are easy
to perform.

Returning to the Figure 4 FLS, the fuzzifier maps crisp num-
bers into FSs. It is needed to activate rules that are in terms of
linguistic variables, which have FSs associated with them. The
inputs to the FLS prior to fuzzification may be certain (e.g., per-
fect measurements) or uncertain (e.g., noisy measurements). The
MEF for a T2 FS lets us handle either kind of measurement.

The inference block of the Figure 4 FLS maps FSs into
FSs. The most commonly used inferential procedures for a
FLS use minimum and product implication models. The
resulting T2 FLSs are then called Mamdani T2 FLSs. TSK
T2 FLSs are also available [5].

1. Compute Centroids of M Consequent IT2 FSs
yjand yiGi =1,

once.
2. Compute Four Boundary Type-1 FLS Centroids

m . m .
y om0 =>"fy [ > f
i=1 i=1

o Mo M
Y, )(x>=Zf’y;/Zf’
i=1 i=1
3. Compute Four Uncertainty Bounds

y,(%) < yi(X) < 71x)

7100 = min {y? 20,y 0}

i=1

Note: The pair y:(x), Y.
4. Compute Approximate TR Set

i), y: 0] ~ [yix), y:x)] = [(y, () + yi(%))/2, (y (%) + ¥r(%))/2]
5. ComputeApproximate Defuzzified Output

Y0 ~ Y0 = 3[7100 + 7 (0]

BOX 7. Uncertainty Bounds and Related Computations

.,M), the end points of the centroids of the M consequent IT2 FSs, are computed using the KM algorithms
(Box 6). These computations can be performed after the design of the IT2 FLS has been completed and they only have to be done

M M
yOm =3 fy. [ 3 F
i=1 i=1

m P m .
y"™ o) =>"fyi / > f
i=1 =1

Y, <y (%) < §,)

y,(0 = max { v x), y™ (x)}

M M .
Y (-1 > (1)
y,00 =70 — | =— Yo =y 00+ | = —
SFAYf Y fiyf
=1 i=1 i=1 i=1
Mo M _ M o_ M A
gt (y;fy)@f’(y,“fy}) b ’(y:fy,‘),_Z]t (Y™ -y
>< M7 I B el X M71 . 7M I -
YEi-y)+ X ~y) Y-y +Xf (v —v)

i=1

(x) are called inner (uncertainty) bounds, whereas the pair y,X), vr(x) are called outer (uncertainty) bounds.
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There are two very important

representations for a T2 FS vertical-slice

and wavy-slice representations.

In many applications of an FLS, crisp numbers must be
obtained at its output. This is accomplished by the output
processor, and is known as defuzzification. In a control-system

trol action. In a signal processing application, such a number

could correspond to a financial forecast or the location of a tar-

get. The output processor for a T1 FLS is just a defuzzifier;

however, the output processor of a T2 FLS contains two com-
ponents: the first maps a T2 FS into a T1 FS and is called a
type-reducer [that performs type-reduction (TR)], and the second

application, for example, such a number corresponds to a con-

Firing Level (FL) Type-Reduction (TR)

UptoM
Fired Rules
(= 1l M)
Center-of Sets
TR
Consequent IT2 FS Centroids (Uses KM
[TTTTTTTTT T ! Algorithms)
i -~
b Left |4, i
Consequent i End i Associated
UMFs and ! with
LMFs 0 Fired Rules
i D i=1,..., M)
| | Right | Y7 U
i End [
© Memory

Defuzzification

FIGURE 11 Computations in an IT2 FLS that use center-of-sets TR.

Consequent
UMFs and
LMFs

Firing Level (FL) Uncertainty Bounds Defuzzification

_. bt !

I I

I I

Left Y :

LB ! A I

| | Yi(x) |

I AVG !

Left Y i i

UB 1 1

I < I

: — |

| L Right 4 :

: Left | 1Y) LB | R i

i End | | : Yr(x) !

' n ! i AVG :
1 | 1

| | Right Vi i

| l i UB | i

: Right [ ! Y7, i |

: End | | : :

I S TS TTTTTTTTTTTTTTTT

Memory

FIGURE 12 Computations in an IT2 FLS that use uncertainty bounds instead of TR. LB = lower

bound, and UB = upper bound.

28 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2007

performs defuzzification on the type-reduced set.
To date, practical computations for a T2 FLS are only pos-
sible when all T2 FSs are IT2 FSs, i.e. for an IT2 FLS.

Computations in an IT2 FLS

What are the detailed computations for an
IT2 FLS and are they easy to understand?
As mentioned above, the RT can be
used to derive the input-output formu-
las for an IT2 FLS. How the formulas
are derived from the (see Figure 4)
input of the Inference block to its out-
put is explained in Box 3. Because prac-
titioners of T1 FLSs are familiar with a
graphical interpretation of the inference
engine computation, T1 computations
are contrasted with T2 computations in
Box 4. Comparing Figures. 6 and 7, it is
easy to see how the uncertainties about
the antecedents flow through the T2
calculations. The more (less) the uncer-
tainties are, then the larger (smaller) the
firing interval is and the larger (smaller)
the fired-rule FOU is.

Referring to Figure 4, observe that
the output of the Inference block is
processed next by the Output Processor
that consists of two stages, Type-reduc-
tion (TR) and Defuzzification. All TR
methods are T2 extensions of T1 defuzzi-
fication methods, each of which is based
on some sort of centroid calculation. For
example, in a T1 FLS, all fired-rule out-
put sets can first be combined by a union
operation after which the centroid of the
resulting T1 FS can be computed. This is
called centroid defuzzification. Alternatively,
since the union operation is computa-
tionally costly, each firing level can be
combined with the centroid of its conse-
quent set, by means of a different cen-
troid calculation, called center-of-sets
defuzzification (see top portion of Box 5).
The T2 analogs of these two kinds of
defuzzification are called centroid TR and
center-of-sets TR (see bottom portion of
Box 5 and also [5] for three other kinds
of TR). The result of TR for IT2 FSs is
an interval set [ y(x), y,(x)].



Regardless of the kind of TR, they all require computing
the centroid of an IT2 FS. Box 6 explains what this is and how
the centroid is computed. The two iterative algorithms for
doing this are known as the Karmik-Mendel (KM) algorithms 2],
and they have the following properties: 1) they are very sim-
ple, 2) they converge to the exact solutions monotonically and
super-exponentially fast, and 3) they can be run in parallel,
since they are independent.

Defuzzification, the last computation in the Figure 4 IT2
FLS, is performed by taking the average of y;(x) and y,(x).

The entire chain of computations is summarized in Fig. 11.
Firing intervals are computed for all rules, and they depend
explicitly on the input x. For center-of-sets TR (see Box 5),
off-line computations of the centroids are performed for each
of the M consequent IT2 FSs using KM algorithms, and are
then stored in memory. Center-of-sets TR combines the firing
intervals and pre-computed consequent centroids and uses the
KM algorithms to perform the actual calculations.

An IT2 FLS for Real-Time Computations

Is it possible to have an IT2 FLS without TR? TR is a bottleneck
for real-time applications of an IT2 FLS because it uses the
iterative KM algorithms for its computations. Even though the
algorithms are very fast, there is a time delay associated with
any iterative algorithm. The good news is that TR can be
replaced by using minimax uncertainty bounds for both y;(x)
and y, (x). These bounds are also known as the Wu-Mendel
uncertainty bounds [11]. Four bounds are computed, namely
lower and upper bounds for both y;(x) and y, (x). Formulas
for these bounds are only dependent upon lower and upper
firing levels for each rule and the centroid of each rule’s conse-
quent set, and, because they are needed in two of the other
articles in this issue, are given in Box 7.

Figure 12 summarizes the computations in an IT2 FLS that
uses uncertainty bounds. The front end of the calculations is
identical to the front end using TR (see Figure 11). After the
uncertainty bounds are computed, the actual values of y; (x)
and y, (x) (that would have been computed using TR, as in
Figure 11) are approximated by averaging their respective
uncertainty bounds, the results being y,(x’) and y,(x').
Defuzzification is then achieved by averaging these two
approximations, the result being y(x), which is an approxima-
tion to y(x). Remarkably, very little accuracy is lost when the
uncertainty bounds are used. This is proven in [11] and has
been demonstrated in [4]. See [7] for additional discussions on
IT2 FLSs without TR.

In summary, I'T2 FLSs are pretty simple to understand and
they can be implemented in two ways, one that uses TR and

one that uses uncertainty bounds.

Conclusions

How do we wrap this up and where can we go to learn more? In
school, we learn about determinism before randomness. Learn-
ing about T1 FSs before T2 FSs fits a similar learning model
(Figure 13). IT2 FSs and FLSs let us capture first-order uncer-
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FIGURE 13 Educational perspective of T2 FSs and FLSs.

tainties about words. It is anticipated that by using more gen-
eral T2 FSs and FLSs it will be possible to capture higher-order
uncertainties about words. Much remains to be done.

For readers who want to learn more about IT2 FSs and
FLSs, the easiest way to do this is to read [9]; for readers who
want a very complete treatment about general and interval T2
FSs and FLSs, see [5]; and, for readers who may already be
familiar with T2 FSs and want to know what has happened
since the 2001 publication of [5], see [7].
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