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Preface 

The field of fuzzy systems and control has been making rapid progress in recent 
years. Motivated by the practical success of fuzzy control in consumer products 
and industrial process control, there has been an increasing amount of work on 
the rigorous theoretical studies of fuzzy systems and fuzzy control. Researchers 
are trying to explain why the practical results are good, systematize the existing 
approaches, and develop more powerful ones. As a result of these efforts, the whole 
picture of fuzzy systems and fuzzy control theory is becoming clearer. Although 
there are many books on fuzzy theory, most of them are either research monographs 
that concentrate on special topics, or collections of papers, or books on fuzzy math- 
ematics. We desperately need a real textbook on fuzzy systems and control that 
provides the skeleton of the field and summarizes the fundamentals. 

This book, which is based on a course developed at the Hong Kong University of 
Science and Technology, is intended as a textbook for graduate and senior students, 
and as a self-study book for practicing engineers. When writing this book, we 
required that it be: 

Well-Structured: This book is not intended as a collection of existing results 
on fuzzy systems and fuzzy control; rather, we first establish the structure that 
a reasonable theory of fuzzy systems and fuzzy control should follow, and 
then fill in the details. For example, when studying fuzzy control systems, we 
should consider the stability, optimality, and robustness of the systems, and 
classify the approaches according to whether the plant is linear, nonlinear, or 
modeled by fuzzy systems. Fortunately, the major existing results fit very well 
into this structure and therefore are covered in detail in this book. Because 
the field is not mature, as compared with other mainstream fields, there are 
holes in the structure for which no results exist. For these topics, we either 
provide our preliminary approaches, or point out that the problems are open. 

a Clear and Precise: Clear and logical presentation is crucial for any book, 
especially for a book associated with the word "fuzzy." Fuzzy theory itself 
is precise; the "fuzziness" appears in the phenomena that fuzzy theory tries 
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to  study. Once a fuzzy description (for example, "hot day") is formulated 
in terms of fuzzy theory, nothing will be fuzzy anymore. We pay special 
attention to the use of precise language to introduce the concepts, to  develop 
the approaches, and to justify the conclusions. 

Practical: We recall that the driving force for fuzzy systems and control 
is practical applications. Most approaches in this book are tested for prob- 
lems that have practical significance. In fact, a main objective of the book 
is to teach students and practicing engineers how to use the fuzzy systems 
approach to solving engineering problems in control, signal processing, and 
communications. 

Rich and Rigorous: This book should be intelligently challenging for stu- 
dents. In addition to the emphasis on practicality, many theoretical results 
are given (which, of course, have practical relevance and importance). All the 
theorems and lemmas are proven in a mathematically rigorous fashion, and 
some effort may have to be taken for an average student to comprehend the 
details. 

Easy to Use as Textbook: To facilitate its use as a textbook, this book is 
written in such a style that each chapter is designed for a one and one-half 
hour lecture. Sometimes, three chapters may be covered by two lectures, or 
vice versa, depending upon the emphasis of the instructor and the background 
of the students. Each chapter contains some exercises and mini-projects that 
form an integrated part of the text. 

The book is divided into six parts. Part I (Chapters 2-6) introduces the fun- 
damental concepts and principles in the general field of fuzzy theory that are par- 
ticularly useful in fuzzy systems and fuzzy control. Part I1 (Chapters 7-11) studies 
the fuzzy systems in detail. The operations inside the fuzzy systems are carefully 
analyzed and certain properties of the fuzzy systems (for example, approximation 
capability and accuracy) are studied. Part I11 (Chapters 12-15) introduces four 
methods for designing fuzzy systems from sensory measurements, and all these 
methods are tested for a number of control, signal processing, or communication 
problems. Part IV (Chapters 16-22) and Part V (Chapters 23-26) parts concentrate 
on fuzzy control, where Part IV studies nonadaptive fuzzy control and Part V stud- 
ies adaptive fuzzy control. Finally, Part VI (Chapters 27-31) reviews a number of 
topics that are not included in the main structure of the book, but are important 
and strongly relevant to fuzzy systems and fuzzy control. 

The book can be studied in many ways, according to the particular interests of 
the instructor or the reader. Chapters 1-15 cover the general materials that can be 
applied to a variety of engineering problems. Chapters 16-26 are more specialized 
in control problems. If the course is not intended as a control course, then some 
materials in Chapters 16-26 may be omitted, and the time saved may be used for 
a more detailed coverage of Chapters 1-15 and 27-31. On the other hand, if it 
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is a control course, then Chapters 16-26 should be studied in detail. The book 
also can be used, together with a book on neural networks, for a course on neural 
networks and fuzzy systems. In this case, Chapters 1-15 and selected topics from 
Chapters 16-31 may be used for the fuzzy system half of the course. If a practicing 
engineer wants to learn fuzzy systems and fuzzy control quickly, then the proofs of 
the theorems and lemmas may be skipped. 

This book has benefited from the review of many colleagues, students, and 
friends. First of all, I would like thank my advisors, Lotfi Zadeh and Jerry Mendel, 
for their continued encouragement. I would like to thank Karl Astrom for sending 
his student, Mikael Johansson, to help me prepare the manuscript during the sum- 
mer of 1995. Discussions with Kevin Passino, Frank Lewis, Jyh-Shing Jang, Hua 
Wang, Hideyuki Takagi, and other researchers in fuzzy theory have helped the or- 
ganization of the materials. The book also benefited from the input of the students 
who took the course at  HKUST. 

Support for the author from the Hong Kong Research Grants Council was greatly 
appreciated. 

Finally, I would like to express my gratitude to my department at  HKUST for 
providing the excellent research and teaching environment. Especially, I would like 
to thank my colleagues Xiren Cao, Zexiang Li, Li Qiu, Erwei Bai, Justin Chuang, 
Philip Chan, and Kwan-Fai Cheung for their collaboration and critical remarks on 
various topics in fuzzy theory. 

Li-Xin Wang 
The Hong Kong University of Science and Technology 
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Chapter 1 

Introduction 

1.1 W h y  Fuzzy Systems? 

According to the Oxford English Dictionary, the word "fuzzy" is defined as "blurred, 
indistinct; imprecisely defined; confused, vague." We ask the reader to disregard 
this definition and view the word "fuzzy" as a technical adjective. Specifically, fuzzy 
systems are systems to be precisely defined, and fuzzy control is a special kind of 
nonlinear control that also will be precisely defined. This is analogous to linear 
systems and control where the word "linear" is a technical adjective used to specify 
"systems and control;" the same is true for the word "fuzzy." Essentially, what we 
want to emphasize is that although the phenomena that the fuzzy systems theory 
characterizes may be fuzzy, the theory itself is precise. 

In the literature, there are two kinds of justification for fuzzy systems theory: 

The real world is too complicated for precise descriptions to be obtained, 
therefore approximation (or fuzziness) must be introduced in order to obtain 
a reasonable, yet trackable, model. 

As we move into the information era, human knowledge becomes increasingly 
important. We need a theory to formulate human knowledge in a systematic 
manner and put it into engineering systems, together with other information 
like mathematical models and sensory measurements. 

The first justification is correct, but does not characterize the unique nature of 
fuzzy systems theory. In fact, almost all theories in engineering characterize the real 
world in an approximate manner. For example, most real systems are nonlinear, 
but we put a great deal of effort in the study of linear systems. A good engineering 
theory should be precise to the extent that it characterizes the key features of the 
real world and, at  the same time, is trackable for mathematical analysis. In this 
aspect, fuzzy systems theory does not differ from other engineering theories. 

The second justification characterizes the unique feature of fuzzy systems theory 
and justifies the existence of fuzzy systems theory as an independent branch in 
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engineering. As a general principle, a good engineering theory should be capable 
of making use of all available information effectively. For many practical systems, 
important information comes from two sources: one source is human experts who 
describe their knowledge about the system in natural languages; the other is sensory 
measurements and mathematical models that are derived according to physical laws. 
An important task, therefore, is to combine these two types of information into 
system designs. To achieve this combination, a key question is how to formulate 
human knowledge into a similar framework used to formulate sensory measurements 
and mathematical models. In other words, the key question is how to transform 
a human knowledge base into a mathematical formula. Essentially, what a fuzzy 
system does is to perform this transformation. In order to understand how this 
transformation is done, we must first know what fuzzy systems are. 

1.2 What Are Fuzzy Systems? 

Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy 
system is a knowledge base consisting of the so-called fuzzy IF-THEN rules. A fuzzy 
IF-THEN rule is an IF-THEN statement in which some words are characterized by 
continuous membership functions. For example, the following is a fuzzy IF-THEN 
rule: 

I F  the speed of a car i s  high, T H E N  apply less force to  the accelerator (1.1) 

where the words "high" and "less" are characterized by the membership functions 
shown in Figs.l.1 and 1.2, respectively.' A fuzzy system is constructed from a 
collection of fuzzy IF-THEN rules. Let us consider two examples. 

Example 1.1. Suppose we want to design a controller to automatically control 
the speed of a car. Conceptually, there are two approaches to designing such a 
controller: the first approach is to use conventional control theory, for example, 
designing a PID controller; the second approach is to emulate human drivers, that 
is, converting the rules used by human drivers into an automatic controller. We now 
consider the second approach. Roughly speaking, human drivers use the following 
three types of rules to drive a car in normal situations: 

I F  speed i s  low, T H E N  apply more force to  the accelerator (1.2) 
I F  speed i s  medium, T H E N  apply normal force to  the accelerator (1.3) 

I F  speed i s  high, T H E N  apply less force to  the accelerator (1.4) 

where the words "low," "more," "medium," "normal," "high," and "less" are char- 
acterized by membership functions similar to those in Figs.l.1-1.2. Of course, more 
rules are needed in real situations. We can construct a fuzzy system based on these 

l A  detailed definition and analysis of membership functions will be given in Chapter 2. At this 
point, an intuitive understanding of the membership functions in Figs. 1.1 and 1.2 is sufficient. 
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t membership function for  "high" 

I / speed (mph) 

Figure 1.1. Membership function for "high," where the 
horizontal axis represents the speed of the car and the ver- 
tical axis represents the membership value for "high." 

rules. Because the fuzzy system is used as a controller, it also is called a fuzzy 
controller. 

Example 1.2. In Example 1.1, the rules are control instructions, that is, they 
represent what a human driver does in typical situations. Another type of human 
knowledge is descriptions about the system. Suppose a person pumping up a balloon 
wished to know how much air he could add before it burst, then the relationship 
among some key variables would be very useful. With the balloon there are three 
key variables: the air inside the balloon, the amount it increases, and the surface 
tension. We can describe the relationship among these variables in the following 
fuzzy IF-THEN rules: 

I F  the amount of air i s  small and it i s  increased slightly, 
T H E N  the surface tension will increase slightly (1.5) 

I F  the amount of air i s  small and it i s  increased substantially, 
T H E N  the surface tension will increase substantially (1.6) 

I F  the amount of air i s  large and it i s  increased slightly, 
T H E N  the surf ace tension will increase moderately (1.7) 

I F  the amount o f  air i s  large and it i s  increased substantially, 
T H E N  the surf ace tension will increase very substantially (1.8) 

where the words "small," "slightly," "substantially," etc., are characterized by mem- 
bership functions similar to those in Figs.l.1 and 1.2. Combining these rules into a 
fuzzy system, we obtain a model for the balloon. 
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t membership function for  "less" 

'2 force to  accelerator 

Figure 1.2. Membership function for "less," where the 
horizontal axis represents the force applied to the acceler- 
ator and the vertical axis represents the membership value 
for "less." 

In summary, the starting point of constructing a fuzzy system is to obtain a 
collection of fuzzy IF-THEN rules from human experts or based on domain knowl- 
edge. The next step is to combine these rules into a single system. Different fuzzy 
systems use different principles for this combination. So the question is: what are 
the commonly used fuzzy systems? 

There are three types of fuzzy systems that are commonly used in the literature: 
(i) pure fuzzy systems, (ii) Takagi-Sugeno-Kang (TSK) fuzzy systems, and (iii) fuzzy 
systems with fuzzifier and defuzzifier. We now briefly describe these three types of 
fuzzy systems. 

The basic configuration of a pure fuzzy system is shown in Fig. 1.3. The f t ~ z z y  
ru le  base represents the collection of fuzzy IF-THEN rules. For examples, for the car 
controller in Example 1.1, the fuzzy rule base consists of the three rules (1.2)-(1.4), 
and for the balloon model of Example 1.2, the fuzzy rule base consists of the four 
rules (1.5)-(1.8). The fuzzy inference engine combines these fuzzy IF-THEN rules 
into a mapping from fuzzy sets2 in the input space U c Rn to fuzzy sets in the 
output space V C R based on fuzzy logic principles. If the dashed feedback line in 
Fig. 1.3 exists, the system becomes the so-called fuzzy dynamic system. 

The main problem with the pure fuzzy system is that its inputs and outputs are 

2The precise definition of fuzzy set is given in Chapter 2. At this point, it is sufficient to view 
a fuzzy set as a word like, for example, "high," which is characterized by the membership function 
shown in Fig.l.1. 
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I Fuzzy Rule Base I 

Fuzzy Inference 

fuzzy sets Engine fuzzy sets 
in u /- ~n v 

Figure 1.3. Basic configuration of pure fuzzy systems. 

fuzzy sets (that is, words in natural languages), whereas in engineering systems the 
inputs and outputs are real-valued variables. To solve this problem, Takagi, Sugeno, 
and Kang (Takagi and Sugeno [I9851 and Sugeno and Kang [1988]) proposed another 
fuzzy system whose inputs and outputs are real-valued variables. 

Instead of considering the fuzzy IF-THEN rules in the form of (1. l ) ,  the Takagi- 
Sugeno-Kang (TSK) system uses rules in the following form: 

I F  the speed x of a car i s  high, 
T H E N  the force to  the accelerator i s  y ='ex (1.9) 

where the word "high" has the same meaning as in (1.1), and c is a constant. 
Comparing (1.9) and (1.1) we see that the THEN part of the rule changes from a 
description using words in natural languages into a simple mathematical formula. 
This change makes it easier to combine the rules. In fact, the Takagi-Sugeno-Kang 
fuzzy system is a weighted average of the values in the THEN parts of the rules. 
The basic configuration of the Takagi-Sugeno-Kang fuzzy system is shown in Fig. 
1.4. 

The main problems with the Takagi-Sugeno-Kang fuzzy system are: (i) its 
THEN part is a mathematical formula and therefore may not provide a natural 
framework to represent human knowledge, and (ii) there is not much freedom left 
to apply different principles in fuzzy logic, so that the versatility of fuzzy systems is 
not well-represented in this framework. To solve these problems, we use the third 
type of fuzzy systems-fuzzy systems with fuzzifier and defuzzifier. 
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Fuzzy Rule Base 52 
xin U _I Weighted Average 

y in V t- 
Figure 1.4. Basic configuration of Takagi-Sugeno-Kang 
fuzzy system. 

In order to  use pure fuzzy systems in engineering systems, a simple method is to  
add a fuzzifier, which transforms a real-valued variable into a fuzzy set, to  the input, 
and a defuzzifier, which transforms a fuzzy set into a real-valued variable, to the 
output. The result is the fuzzy system with fuzzifier and defuzzifier, shown in Fig. 
1.5. This fuzzy system overcomes the disadvantages of the pure fuzzy systems and 
the Takagi-Sugeno-Kang fuzzy systems. Unless otherwise specified, from now on 
when we refer fuzzy systems we mean fuzzy systems with fuzzifier and defuzzifier. 

To conclude this section, we would like to  emphasize a distinguished feature of 
fuzzy systems: on one hand, fuzzy systems are multi-input-single-output mappings 
from a real-valued vector to a real-valued scalar (a multi-output mapping can be 
decomposed into a collection of single-output mappings), and the precise mathemat- 
ical formulas of these mappings can be obtained (see Chapter 9 for details); on the 
other hand, fuzzy systems are knowledge-based systems constructed from human 
knowledge in the form of fuzzy IF-THEN rules. An important contribution of fuzzy 
systems theory is that it provides a systematic procedure for transforming a knowl- 
edge base into a nonlinear mapping. Because of this transformation, we are able to  
use knowledge-based systems (fuzzy systems) in engineering applications (control, 
signal processing, or communications systems, etc.) in the same manner as we use 
mathematical models and sensory measurements. Consequently, the analysis and 
design of the resulting combined systems can be performed in a mathematically 
rigorous fashion. The goal of this text is to show how this transformation is done, 
and how the analysis and design are performed. 
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Fuzzy Rule Base 

Fuzzifier Defuzzifier '+ 
x in U y in V 

Engine 
fuzzy sets fuzzy sets 

in U in V 

Figure 1.5. Basic configuration of fuzzy systems with fuzzifier and 
defuzzifier. 

1.3 Where Are Fuzzy Systems Used and How? 

Fuzzy systems have been applied to a wide variety of fields ranging from control, 
signal processing, communications, integrated circuit manufacturing, and expert 
systems to business, medicine, psychology, etc. However, the most significant ap- 
plications have concentrated on control problems. Therefore, instead of listing the 
applications of fuzzy systems in the different fields, we concentrate on a number of 
control problems where fuzzy systems play a major role. 

f i zzy  systems, as shown in Fig. 1.5, can be used either as open-loop controllers 
or closed-loop controllers, as shown in Figs. 1.6 and 1.7, respectively. When used as 
an open-loop controller, the fuzzy system usually sets up some control parameters 
and then the system operates according to  these control parameters. Many applica- 
tions of fuzzy systems in consumer electronics belong to this category. When used 
as a closed-loop controller, the fuzzy system measures the outputs of the process 
and takes control actions on the process continuously. Applications of fuzzy systems 
in industrial processes belong to  this category. We now briefly describe how fuzzy 
systerr~s are used in a number of consumer products and industrial systems. 
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systerr 

Figure 1.6. h z z y  system as open-loop controller. 

Figure 1.7. Fuzzy system as closed-loop controller. 

Process 

I 

1.3.1 Fuzzy Washing Machines 

P 

The fuzzy washing machines were the first major ,consumer products to  use fuzzy 
systems. They were produced by Matsushita Electric Industrial Company in Japan 
around 1990. They use a fuzzy system to automatically set the proper cycle ac- 
cording to the kind and amount of dirt and the size of the load. More specifically, 
the fuzzy system used is a three-input-one-output system, where the three inputs 

Fuzzy 

system 
- 

4 
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are measuremeqts of-dirtiness, type of dirt, and load size, and the output is the 
correct cycle. Sensors supply the fuzzy system with the inputs. The optical sensor 
sends a beam of light through the water and measures how much of it reaches the 
other side. The dirtier the water, the less light crosses. The optical sensor also can 
tell whether the dirt is muddy or oily. Muddy dirt dissolves faster. So, if the light 
readings reach minimum quickly, the dirt is muddy. If the downswing is slower, it 
is oily. And if the curve slopes somewhere in between, the dirt is mixed. The ma- 
chine also has a load sensor that registers the volume of clothes. Clearly, the more 
volume of the clothes, the more washing time is needed. The heuristics above were 
summarized in a number of fuzzy IF-THEN rules that were then used to construct 
the fuzzy system. 

1.3.2 Digital Image Stabilizer 

Anyone who has ever used a camcorder realizes that it is very difficult for a human - 
hand to hold the camcorder-without shaking.it slightly and imparting an irksome 

* 4 d -  quiver to the tape. Smoothing out this jitter would produce a new generation of 
camcorders and would have tremendous commercial value. Matsushita introduced 
what it calls a digital image stabilizer, based on fuzzy systems, which stabilizes the 
picture when the hand is shaking. The digital image stabilizer is a fuzzy system 
that is constructed based on the following heuristics: 

I F  all the points in the picture are moving i n  the same direction, 
T H E N  the hand i s  shaking 

(1.10) 

I F  only some points i n  the picture are moving, 
T H E N  the hand i s  not shaking (1.11) 

More specifically, the stabilizer compares each current frame with the previous 
images in memory. If the whole appears to have shifted, then according to (1.10) the 
hand is shaking and the fuzzy system adjusts the frame to compensate. Otherwise, * 6 

it leaves it alone. Thus, if a car crosses the field, only a portion of the image will 
change, so the camcorder does not try to compensate. In this way the picture 
remains steady, although the hand is shaking. 

1.3.3 Fuzzy Systems in Cars 

An automobile is a collection of many systems-engine, transmission, brake, sus- 
pension, steering, and more-and fuzzy systems have been applied to almost all 
of them. For example, Nissan has patented a fuzzy automatic transmission that 
saves fuel by 12 to 17 percent. It is based on the following observation. A normal 
transmission shifts whenever the car passes-a certain speed, it therefore changes 
quite often and each shift consumes gas. However, human drivers ~t only shift 

-- - .- 

less frequently, but also consider nonspeed factors. For example, if accelerating up 
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a hill, they may delay the shift. Nissan's fuzzy automatic transmission device sum- 
marized these heuristics into a collection of fuzzy IF-THEN rules that were then 
used to construct a fuzzy system to guide the changes of gears. 

Nissan also developed a fuzzy antilock braking system. The challenge here is to 
apply the greatest amount of pressure to the brake without causing it to  lock. The 
Nissan system considers a number of heuristics, for example, 

I F  the car slows down very rapidly, 
T H E N  the system assumes brake - lock and eases up on pressure 

(1.12) 

In April 1992, Mitsubishi announced a fuzzy omnibus system that controls a 
car's automatic transmission, suspension, traction, four-wheel steering, four-wheel 
drive, and air conditioner. The fuzzy transmission downshifts on curves and also 
keeps the car from upshifting inappropriately on bends or when the driver releases 
the accelerator. The fuzzy suspension contains sensors in the front of the car that 
register vibration and height changes in the road and adjusts the suspension for a 
smoother ride. Fuzzy traction prevents excess speed on corners and improves the 
grip on slick roads by deciding whether they are level or sloped. Finally, fuzzy 
steering adjusts the response angle of the rear wheels according to road conditions 
and the car's speed, and fuzzy air conditioning monitors sunlight, temperature, and 
humidity to enhance the environment inside the car. 

1.3.4 Fuzzy Control of a Cement Kiln 

Cement is manufactured by finegrinding of cement clinker. The clinkers are pro- 
duced in the cement kiln by heating a mixture of linestone, clay, and sand compo- 
nents. Because cement kilns exhibit time-varying nonlinear behavior and relatively 
few measurements are available, they are difficult to control using conventional 
control theory. 

In the late 1970s, Holmblad and Bstergaard of Denmark developed a fuzzy 
system to control the cement kiln. The fuzzy system (fuzzy controller) had four 
inputs and two outputs (which can be viewed as two fuzzy systems in the form of 
Fig. 1.5, which share the same inputs). The four inputs are: (i) oxygen percentage 
in exhausted gases, (ii) temperature of exhaust gases, (iii) kiln drive torque, and 
(iv) litre weight of clinker (indicating temperature level in the burning zone and 
quality of clinker). The two outputs are: (i) coal feed rate and (ii) air flow. A 
collection of fuzzy IF-THEN rules were constructed that describe how the outputs 
should be related to the inputs. For example, the following two rules were used: 

I F  the oxygen percentage i s  high and the temperature i s  low, 
T H E N  increase air flow 

(1.13) 

I F  the oxygen percentage i s  high and the temperature i s  high, 
T H E N  reduce the coal feed rate slightly 
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The fuzzy controller was constructed by combining these rules into fuzzy systems. 
In June 1978, the fuzzy controller ran for six days in the cement kiln of F.L. Smidth 
& Company in Denmark-the first successful test of fuzzy control on a full-scale 
industrial process. The fuzzy controller showed a slight improvement over the results 
of the human operator and also cut fuel consumption. We will show more details 
about this system in Chapter 16. 

1.3.5 Fuzzy Control of Subway Train 

The most significant application of fuzzy systems to date may be the fuzzy control 
system for the Sendai subway in Japan. On a single north-south route of 13.6 
kilometers and 16 stations, the train runs along very smoothly. The fuzzy control 
system considers four performance criteria simutaneously: safety, riding comfort, 
traceability to target speed, and accuracy of stopping gap. The fuzzy control system 
consists of two parts: the constant speed controller (it starts the train and keeps the 
speed below the safety limit), and the automatic stopping controller (it regulates the 
train speed in order to stop at  the target position). The constant speed controller 
was constructed from rules such as: 

For safety;  I F  the speed of train i s  approaching the limit speed, 
T H E N  select the maximum brake notch 

(1.15) 

For riding com f ort; I F  the speed i s  i n  the allowed range, 
T H E N  do not change the control notch 

(1.16) 

More rules were used in the real system for traceability and other factors. The 
automatic stopping controller was constructed from the rules like: 

For riding comfort; I F  the train will stop i n  the allowed zone, 
T H E N  do not change the control notch 

(1.17) 

For riding corn f ort and sa fe ty ;  I F  the train i s  i n  the allowed zone, 
T H E N  change the control notch from acceleration to slight braking (1.18) 

Again, more rules were used in the real system to take care of the accuracy of 
stopping gap and other factors. By 1991, the Sendai subway had carried passengers 
for four years and was still one of the most advanced subway systems. 

1.4 What Are the Major Research Fields in Fuzzy Theory? 

By fuzzy theory we mean all the theories that use the basic concept of fuzzy set or 
continuous membership function. Fuzzy theory can be roughly classified according 
to Fig.l.8. There are five major branches: (i) fuzzy mathematics, where classi- 
cal mathematical concepts are extended by replacing classical sets with fuzzy sets; 
(ii) fuzzy logic and artificial intelligence, where approximations to classical logic 
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Fuzzy Theory 

Fuzzy Fuzzy Fuzzy Decision UflCertaiflty & Fuzzy Logic 
Mathematics Systems -Making Information & Al 

fuzzy sets 
fuzzy measures multicriteria optimization fuzzy logic principles 
fuzzy analysis fuzzy mathematical approximate reasoning 
fuzzy relations programming fuzzy expert systems 
fuzzy topology 

fuzzy control 
processing measures of 

uncertainty 

controller design 

... 

equalization 
stability analysis pattern recognitior channel 
. . . image processing assignment 

. . . 

Figure 1.8. Classification of fuzzy theory. 

are introduced and expert systems are developed based on fuzzy information and 
approximate reasoning; (iii) fuzzy systems, which include fuzzy control and fuzzy 
approaches in signal processing and communications; (iv) uncertainty and infor- 
mation, where different kinds of uncertainties are analyzed; and (v) fuzzy decision 
making, which considers optimalization problems with soft constraints. 

Of course, these five branches are not independent and there are strong inter- 
connections among them. For example, fuzzy control uses concepts from fuzzy 
mathematics and fuzzy logic. 

fiom a practical point of view, the majority of applications of fuzzy theory has 
concentrated on fuzzy systems, especially fuzzy control, as we could see from the 
examples in Section 1.3. There also are some fuzzy expert systems that perform 
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medical diagnoses and decision support (Terano, Asai and Sugeno [1994]). Because 
fuzzy theory is still in its infancy from both theoretical and practical points of view, 
we expect that more solid practical applications will appear as the field matures. 

From Fig. 1.8 we see that fuzzy theory is a huge field that comprises a variety 
of research topics. In this text, we concentrate on fuzzy systems and fuzzy control. 
We first will study the basic concepts in fuzzy mathematics and fuzzy logic that are 
useful in fuzzy systems and control (Chapters 2-6), then we will study fuzzy systems 
and control in great detail (Chapters 7-26), and finally we will briefly review some 
topics in other fields of fuzzy theory (Chapters 27-31). 

1.5 A Brief History of Fuzzy Theory and Applications 

1.5.1 The 1960s: The Beginning of Fuzzy Theory 

Fuzzy theory was initiated by Lotfi A. Zadeh in 1965 with his seminal paper LLF'uzzy 
Sets" (Zadeh [1965]). Before working on fuzzy theory, Zadeh was a well-respected 
scholar in control theory. He developed the concept of "state," which forms the 
basis for modern control theory. In the early '60s, he thought that classical control 
theory had put too much emphasis on'$;lcision and therefore could not handle the 
complex systems. As early as 1962, he wrote that to handle biological systems "we 
need a radically different kind of mathematics, the mathematics of fuzzy or cloudy 
quantities which are not describable in terms of probability distributions" (Zadeh 
[1962]). Later, he formalized the ideas into the paper "Fuzzy Sets.'' 

Since its birth, fuzzy theory has been sparking /controversy. Some scholars, like 
Richard Bellman, endorsed the idea and began to  work in this new field. Other 
scholars objected to the idea and viewed "fuzzification" as against basic scientific 
principles. The biggest challenge, however, came from mathematicians in statistics 
and probability who claimed that probability is sufficient to characterize uncer- 
tainty and any problems that fuzzy theory can solve can be solved equally well or 
better by probability theory (see Chapter 31). Because there were no real practical 
applications of fuzzy theory in the beginning, it was difficult to defend the field 
from a purely philosophical point of view. Almost all major research institutes in 
the world failed to view fuzzy theory as a serious research field. 

Although fuzzy theory did not fall into the mainstream, there were still many 
researchers around the world dedicating themselves to this new field. In the late 
1960s, many new fuzzy methods like fuzzy algorithms, fuzzy decision making, etc., 
were proposed. 

1.5.2 The 1970s: Theory Continued to Grow and Real Applications Appeared 

It is fair to  say that the establishment of fuzzy theory as an independent field is 
largely due to the dedication and outstanding work of Zadeh. Most of the funda- 
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mental concepts in fuzzy theory were proposed by Zadeh in the late '60s and early 
'70s. After the introduction of fuzzy sets in 1965, he proposed the concepts of fuzzy 
algorithms in 1968 (Zadeh [1968]), fuzzy decision making in 1970 (Bellman and 
Zadeh [1970]), and fuzzy ordering in 1971 (Zadeh [1971b]). In 1973, he published 
another seminal paper, "Outline of a new approach to the analysis of complex sys- 
tems and decision processes" (Zadeh [1973]), which established the foundation for 
fuzzy control. In this paper, he introduced the concept of linguistic variables and 
proposed to use fuzzy IF-THEN rules to formulate human knowledge. 

A big event in the '70s was the birth of fuzzy controllers for real systems. In 
1975, Mamdani and Assilian established the basic framework of fuzzy controller 
(which is essentially the fuzzy system in Fig.l.5) and applied the fuzzy controller 
to control a steam engine. Their results were published in another seminal paper 
in fuzzy theory "An experiment in linguistic synthesis with a fuzzy logic controller" 
(Mamdani and Assilian [1975]). They found that the fuzzy controller was very easy 
to construct and worked remarkably well. Later in 1978, Holmblad and Bstergaard 
developed the first fuzzy controller for a full-scale industrial process-the fuzzy 
cement kiln controller (see Section 1.3). 

Generally speaking, the foundations of fuzzy theory were established in the 
1970s. With the introduction of many new concepts, the picture of fuzzy theory as 
a new field was becoming clear. Initial applications like the fuzzy steam engine con- 
troller and the fuzzy cement kiln controller also showed that the field was promising. 
Usually, the field should be founded by major resources and major research insti- 
tutes should put some manpower on the topic. Unfortunately,:this never happened. 
On the contrary, in the late '70s and early '80s, many researchers in fuzzy theory 
had to change their field because they could not find support to continue their work. 
This was especially true in the United States. 

1.5.3 The 1980s: Massive Applications Made a Difference 

In the early '80s, this field, from a theoretical point of view, progressed very slowly. 
Few new concepts and approaches were proposed during this period, simply because 
very few people were still working in the field. It was the application of fuzzy control 
that saved the field. 

Japanese engineers, with their sensitivity to new technology, quickly found that 
fuzzy controllers were very easy to design and worked very well for many problems. 
Because fuzzy control does not require a mathematical model of the process, it could 
be applied to many systems where conventional control theory could not be used 
due to a lack of mathematical models. In 1980, Sugeno began to create, Japan's first 
fuzzy application-control of a Fuji Electric water purification plarit. In 1983, he 
began the pioneer work on a fuzzy robot, a self-parking car that was controlled by 
calling out commands (Sugeno and Nishida [1985]). In the early 1980s, Yasunobu 
and Miyamoto from Hitachi began to develop a fuzzy control system for the Sandai 



Sec. 1.6. Summary and Further Readings 15 

subway. They finished the project in 1987 and created the most advanced subway 
system on earth. This very impressive application of fuzzy control made a very big 
difference. i , ' , / .  - 

In July 1987, the Second Annual International Fuzzy Systems Association Con- 
ference was held in Tokyo. The conference began three days after the Sendai subway 
began operation, and attendees were amused with its dreamy ride. Also, in the con- 
ference Hirota displayed a fuzzy robot arm that played two-dimensional Ping-Pong 
in real time (Hirota, Arai and Hachisu [1989])>, 3nd Yamakawa demonstrated a 
fuzzy system that balanced an inverted pen'&9"~&'[~amakawa [1989]). Prior to this 
event, fuzzy theory was not well-known in Japan. After it, a wave of pro-fuzzy 
sentiment swept through the engineering, government, and business communities. 
By the early 1990s, a large number of fuzzy consumer products appeared in the 
market (see Section 1.3 for examples). 

1.5.4 The 1990s: More Challenges Remain 

The success of fuzzy systems in Japan surprised the mainstream researchers in the 
United States and in Europe. Some still criticize fuzzy theory, but many others have 
been changing their minds and giving fuzzy theory a chance to be taken seriously. 
In February 1992, the first IEEE International Conference on Fuzzy Systems was 
held in San Diego. This event symbolized the acceptance of fuzzy theory by the 
largest engineering organization-IEEE. In 1993, the IEEE Transactions on Fuzzy 
Systems was inaugurated. 

From a theoretical point of view, fuzzy systems and control has advanced rapidly 
in the late 1980s and early 1990s. Although it is hard to say there is any break- 
through, solid progress has been made on some fundamental problems in fuzzy 
systems and control. For examples, neural network techniques have been used to 
determine membership functions in a systematic manner, and rigor&% stability 
analysis of fuzzy control systems has appeared. Although the whole picture of 
fuzzy systems and control theory is becoming clearer, much work remains to be 
done. Most approaches and analyses are preliminary in nature. We believe that 
only when the top research institutes begin to put some serious man power on the 
research of fuzzy theory can the field make major progress. 

1.6 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The goal of using fuzzy systems is to put human knowledge into engineering 
systems in a systematic, efficient, and analyzable order. 

The basic architectures of the commonly used fuzzy systems. 
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The fuzzy IF-THEN rules used in certain industrial processes and consumer 
products. 

Classification and brief history of fuzzy theory and applications. 

A very good non-technical introduction to fuzzy theory and applications is Mc- 
Neil1 and Freiberger [1993]. It contains many interviews and describes the major 
events. Some historical remarks were made in Kruse, Gebhardt, and Klawonn 
[1994]. Klir and Yuan [I9951 is perhaps the most comprehensive book on fuzzy sets 
and fuzzy logic. Earlier applications of fuzzy control were collected in Sugeno [I9851 
and more recent applications (mainly in Japan) were summarized in Terano, Asai, 
and Sugeno [1994]. 

1.7 Exercises 

Exercise 1.1. Is the fuzzy washing machine an open-loop control system or 
a closed-loop control system? What about the fuzzy cement kiln control system? 
Explain your answer. 

Exercise 1.2. List four to six applications of fuzzy theory to practical problems 
other than those in Section 1.3. Point out the references where you find these 
applications. 
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Exercise 1.3. Suppose we want to design a fuzzy system to balance the inverted 
pendulum shown in Fig. 1.9. Let the angle 8 and its derivation 8 be the inputs to 
the fuzzy system and the force u applied to the cart be its output. 

(a) Determine three to five fuzzy IF-THEN rules based on the common sense of 
how to balance the inverted pendulum. 

(b) Suppose that the rules in (a) can successfully control a particular inverted 
pendulum system. Now if we want to use the rules to control another inverted 
pendulum system with different values of m,,m, and 1, what parts of the rules 
should change and what parts may remain the same. 

Figure 1.9. The inverted pendulum system. 
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Part I 

The Mathematics of Fuzzy 
Systems and Control 

Fuzzy mathematics provide the starting point and basic language for fuzzy sys- 
tems and fuzzy control. Fuzzy mathematics by itself is a huge field, where fuzzy 
mathematical principles are developed by replacing the sets in classical mathemati- 
cal theory with fuzzy sets. In this way, all the classical mathematical branches may 
be "fuzzified." We have seen the birth of fuzzy measure theory, fuzzy topology, 
fuzzy algebra, fuzzy analysis, etc. Understandably, only a small portion of fuzzy 
mathematics has found applications in engineering. In the next five chapters, we 
will study those concepts and principles in fuzzy mathematics that are useful in 
fuzzy systems and fuzzy control. 

In Chapter 2, we will introduce the most fundamental concept in fuzzy theory 
-the concept of fuzzy set. In Chapter 3, set-theoretical operations on fuzzy sets 
such as complement, union, and intersection will be studied in detail. Chapter 4 
will study fuzzy relations and introduce an important principle in fuzzy theory- 
the extension principle. Linguistic variables and fuzzy IF-THEN rules, which are 
essential to fuzzy systems and fuzzy control, will be precisely defined and studied 
in Chapter 5. Finally, Chapter 6 will focus on three basic principles in fuzzy logic 
that are useful in the fuzzy inference engine of fuzzy systems. 



Chapter 2 

Fuzzy Sets and Basic 
Operations on Fuzzy Sets 

2.1 From Classical Sets to Fuzzy Sets 

Let U be the unaverse of discourse, or universal set, which contains all the possible 
elements of concern in each particular context or application. Recall that a classical 
(crisp) set A, or simply a set A, in the universe of discourse U can be defined by 
listing all of its members (the last method) or by specifying the properties that must 
be satisfied by the members of the set (the rule method). The list method can be 
used only for finite sets and is therefore of limited use. The rule method is more 
general. In the rule method, a set A is represented as 

A = {x E Ulx meets some conditions) (2.1) 

There is yet a third method to define a set A-the membership method, which 
introduces a zero-one membership function (also called characteristic function, dis- 
crimination function, or indicator function) for A, denoted by pA(x), such that 

The set A is mathematically equivalent to its membership function p ~ ( x )  in the 
sense that knowing p~ (x) is the same as knowing A itself. 

Example 2.1. Consider the set of all cars in Berkeley; this is the universe of 
discourse U. We can define different sets in U according to the properties of cars. 
Fig. 2.1 shows two types of properties that can be used to define sets in U: (a) US 
cars or non-US cars, and (b) number of cylinders. For example, we can define a set 
A as all cars in U that have 4 cylinders, that is, 

A = {x E Ulx has 4 cylinders) (2.3) 
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4 Cylinder 

8 Cylinder 

Others 

Figure 2.1. Partitioning of the set of all cars in Berkeley 
into subsets by: (a) US cars or non-US cars, and (b) number 
of cylinders. 

or 
1 i f  x E U and x has  4 cylinders 
0 i f  x E U and x does not have 4 cylinders (2.4) 

If we want to define a set in U according to whether the car is a US car or a non-US 
car, we face a difficulty. One perspective is that a car is a US car if it carries the 
name of a USA auto manufacturer; otherwise it is a non-US car. However, many 
people feel that the distinction between a US car and a non-US car is not as crisp 
as it once was, because many of the components for what we consider to be US cars 
(for examples, Fords, GM's, Chryslers) are produced outside of the United States. 
Additionally, some "non-US" cars are manufactured in the USA. How to deal with 
this kind of problems? I7 

Essentially, the difficulty in Example 2.1 shows that some sets do not have 
clear boundaries. Classical set theory requires that a set must have a well-defined 
property, therefore it is unable to define the set like "all US cars in Berkeley." 
To overcome this limitation of classical set theory, the concept of fuzzy set was 
introduced. It turns out that this limitation is fundamental and a new theory is 
needed-this is the fuzzy set theory. 

Definition 2.1. A fuzzy set in a universe of discourse U is characterized by a 
membership function P A  (x) that takes values in the interval [0, 11. 

Therefore, a fuzzy set is a generalization of a classical set by allowing the mem- 
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bership function to take any values in the interval [0, 11. In other words, the mem- 
bership function of a classical set can only take two values-zero and one, whereas 
the membership function of a fuzzy set is a continuous function with range [0, 11. 
We see from the definition that there is nothing L'fuzzy7' about a fuzzy set; it is 
simply a set with a continuous membership function. 

A fuzzy set A in U may be represented as a set of ordered pairs of a generic 
element x and its membership value, that is, 

When U is continuous (for example, U = R), A is commonly written as 

where the integral sign does not denote integration; it denotes the collection of all 
points x E U with the associated membership function pA(x) .  When U is discrete, 
A is commonly written as 

where the summation sign does not represent arithmetic addition; it denotes the 
collection of all points x E U with the associated membership function pA(x) .  

We now return to Example 2.1 and see how to use the concept of fuzzy set to 
define US and non-US cars. 

Example 2.1 (Cont'd). We can define the set 'LUS cars in Berkeley," denoted 
by D, as a fuzzy set according to the percentage of the car's parts made in the USA. 
Specifically, D is defined by the membership function 

where p(x )  is the percentage of the parts of car x made in the USA and it takes 
values from 0% to 100%. For example, if a particular car xo has 60% of its parts 
made in the USA, then we say that the car xo belongs to the fuzzy set D to the 
degree of 0.6. 

Similarly, we can define the set "non-US cars in Berkeley," denoted by F ,  as a 
fuzzy set with the membership function 

where p(x )  is the same as in (2.8). Thus, if a particular car xo has 60% of its parts 
made in the USA, then we say the car xo belongs to the fuzzy set F to the degree 
of 1-0.6=0.4. Fig. 2.2 shows (2.8) and (2.9). Clearly, an element can belong to 
different fuzzy sets to the same or different degrees. 

We now consider another example of fuzzy sets and from it draw some remarks. 
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Figure 2.2. Membership functions for US ( p D )  and non- 
US ( p F )  cars based on the percentage of parts of the car 
made in the USA (p(x)). 

Example 2.2. Let Z be a fuzzy set named "numbers close to zero." Then a 
possible membership function for Z is 

where x E R. This is a Gaussian function with mean equal to zero and standard 
derivation equal to one. According to this membership function, the numbers 0 and 
2 belong to the fuzzy set Z to the degrees of e0 = 1 and e-4, respectively. 

We also may define the membership function for Z as 

According to this membership function, the numbers 0 and 2 belong to the fuzzy set 
Z to the degrees of 1 and 0, respectively. (2.10) and (2.11) are plotted graphically 
in Figs. 2.3 and 2.4, respectively. We can choose many other membership functions 
to characterize "numbers close to zero." 0 

From Example 2.2 we can draw three important remarks on fuzzy sets: 

The properties that a fuzzy set is used to characterize are usually fuzzy, for 
example, "numbers close to zero" is not a precise description. Therefore, we 
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Figure 2.3. A possible membership function to character- 
ize "numbers close to zero.'' 

may use different membership functions to characterize the same description. 
However, the membership functions themselves are not fuzzy-they are precise 
mathematical functions. Once a fuzzy property is represented by a member- 
ship function, for example, once "numbers close to zero" is represented by the 
membership function (2.10) or (2.11), nothing will be fuzzy anymore. Thus, 
by characterizing a fuzzy description with a membership function, we essen- 
tially defuzzify the fuzzy description. A common misunderstanding of fuzzy 
set theory is that fuzzy set theory tries to fuzzify the world. We see, on the 
contrary, that fuzzy sets are used to defuzzify the world. 

Following the previous remark is an important question: how to determine the 
membership functions? Because there are a variety of choices of membership 
functions, how to choose one from these alternatives? Conceptually, there are 
two approaches to determining a membership function. The first approach 
is to use the knowledge of human experts, that is, ask the domain experts 
to specify the membership functions. Because fuzzy sets are often used to 
formulate human knowledge, the membership functions represent a part of 
human knowledge. Usually, this approach can only give a rough formula of the 
membership function; fine-tuning is required. In the second approach, we use 
data collected from various sensors to determine the membership functions. 
Specifically, we first specify the structures of the membership functions and 
then fine-tune the parameters of the membership functions based on the data. 
Both approaches, especially the second approach, will be studied in detail in 
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Figure 2.4. Another possible membership function to 
characterize "numbers close to zero." 

later chapters. 

Finally, it should be emphasized that although (2.10) and (2.11) are used to 
characterize the same description "numbers close to zero," they are different 
fuzzy sets. Hence, rigorously speaking, we should use different labels to rep- 
resent the fuzzy sets (2.10) and (2.11); for example, we should use pz, (x) 
in (2.10) and pz, (x) in (2.11). A fuzzy set has a one-to-one correspondence 
with its membership function. That is, when we say a fuzzy set, there must 
be a unique membership function associated with it; conversely, when we 
give a membership function, it represents a fuzzy set. Fuzzy sets and their 
membership functions are equivalent in this sense. 

Let us consider two more examples of fuzzy sets, one in continuous domain and 
the other in discrete domain; they are classical examples from Zadeh's seminal paper 
(Zadeh [1965]). 

Example 2.3. Let U be the interval [O, 1001 representing the age of ordinary 
humans. Then we may define fuzzy sets "young" and "old" as (using the integral 
notation (2.6)) 
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Figure 2.5. Diagrammatic representation of "young" and 
"old." 

See Fig. 2.5. 

Example 2.4. Let U be the integers from 1 to 10, that is, U = {1,2, ..., 10). 
Then the fuzzy set "several" may be defined as (using the summation notation 
(2.7)) 

several = 0.513 + 0.814 + 115 + 116 + 0.817 + 0.518 (2.14) 

That is, 5 and 6 belong to the fuzzy set "several" with degree 1, 4 and 7 with degree 
0.8, 3 and 8 with degree 0.5, and 1,2,9 and 10 with degree 0. See Fig. 2.6. 

2.2 Basic Concepts Associated with Fuzzy Set 

We now introduce some basic concepts and terminology associated with a fuzzy set. 
Many of them are extensions of the basic concepts of a classical (crisp) set, but 
some are unique to the fuzzy set framework. 

Definition 2.2. The concepts of support, fuzzy singleton, center, crossover 
point, height, normal fuzzy set, a-cut, convex fuzzy set, and projections are defined 
as follows. 

The support of a fuzzy set A in the universe of discourse U is a crisp set that 
contains all the elements of U that have nonzero membership values in A, that is, 

supp(A) = {a: E U~PA(X) > 0) (2.15) 
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integer x 

1 2 3 4 5 6 7 8 9 1 0  

Figure 2.6. Membership function for fuzzy set "several." 

where supp(A) denotes the support of fuzzy set A. For example, the support of 
fuzzy set "several" in Fig. 2.6 is the set of integers {3,4,5,6,7,8). If the support 
of a fuzzy set is empty, it is called an empty fuzzy set. A fuzzy singleton is a fuzzy 
set whose support is a single point in U .  

The center of a fuzzy set is defined as follows: if the mean value of all points 
at  which the membership function of the fuzzy set achieves its maximum value is 
finite, then define this mean value as the center of the fuzzy set; if the mean value 
equals positive (negative) infinite, then the center is defined as the smallest (largest) 
among all points that achieve the maximum membership value. Fig. 2.7 shows the 
centers of some typical fuzzy sets. The crossover point of a fuzzy set is the point in 
U whose membership value in A equals 0.5. 

The height of a fuzzy set is the largest membership value attained by any point. 
For example, the heights of all the fuzzy sets in Figs.2.2-2.4 equal one. If the height 
of a fuzzy set equals one, it is called a normal fuzzy set. All the fuzzy sets in Figs. 
2.2-2.4 are therefore normal fuzzy sets. 

An a-cut  of a fuzzy set A is a crisp set A, that contains all the elements in U 
that have membership values in A greater than or equal to a, that is, 

For example, for a = 0.3, the a-cut of the fuzzy set (2.11) (Fig. 2.4) is the crisp set 
[-0.7,0.7], and for a = 0.9, it is [-0.1,0.1]. 

When the universe of discourse U is the n-dimensional Euclidean space Rn, the 
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center center center center 
of Al of A2 of A3 of A4 

Figure 2.7. Centers of some typical fuzzy sets. 

concept of set convexity can be generalized to fuzzy set. A fuzzy set A is said to 
be convex if and only if its a-cut A, is a convex set for any a in the interval (0, 11. 
The following lemma gives an equivalent definition of a convex fuzzy set. 

Lemma 2.1. A fuzzy set A in Rn is convex if and only if 

for all XI, x2 E Rn and all X E [0, 11. 

Proof: First, suppose that A is convex and we prove the truth of (2.17). Let xl 
and $2 be arbitrary points in Rn and without loss of generality we assume pA(xl) 5 
pA(x2). If pA(xl) = 0, then (2.17) is trivially true, so we let pA(xl) = a > 0. Since 
by assumption the a-cut A, is convex and XI ,  x2 E A, (since pA (x2) L PA (XI) = 
a) ,  we have Axl + (1 - X)x2 E A, for all X E [0, 11. Hence, pAIXxl + (1 - X)x2] 2 
a = P A ( X ~ )  = min[pA(xl), PA(XZ)]. 

Conversely, suppose (2.17) is true and we prove that A is convex. Let a be 
an arbitrary point in (0,1]. If A, is empty, then it is convex (empty sets are 
convex by definition). If A, is nonempty, then there exists XI E Rn such that 
pA(xl) = a (by the definition of A,). Let xa be an arbitrary element in A,, then 
pA(x2) > a = pA(xl). Since (2.17) is true by assumption, we have ~ A [ X X ~  + (1 - 
A)%,] > min[pA(xl),pA(x2)] = pA(xl) = a for all X E [O, 11, which means that 
Axl + (1 - X)x2 E A,. So A, is a convex set. Since a is an arbitrary point in (0, 11, 
the convexity of A, implies the convexity of A. 
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Let A be a fuzzy set in Rn with membership function pA(x) = ~ A ( X I ,  ..., x,) 
and H be a hyperplane in Rn defined by H = {x E Rnlxl = 0) (for notational 
simplicity, we consider this special case of hyperplane; generalization to general 
hyperplanes is straightforward). The pro ject ion of A on H is a fuzzy set AH in 
RTL-1 defined by 

PAH (22, ..., xn) = SUP ~ ~ ( 2 1 ,  ..-, xn) (2.18) 
Z I E R  

where supzl E R  p~ (XI, ..., x,) denotes the maximum value of the function p~ (XI, . .. , x,) 
when xl takes values in R. 

2.3 Operations on Fuzzy Sets 

The basic concepts 
set. In this section, 
assume that A and 

introduced in Sections 2.1 and 2.2 concern only a single fuzzy 
we study the basic operations on fuzzy sets. In the sequel, we 
B are fuzzy sets defined in the same universe of discourse U .  

Definition 2.3. The equality, containment, complement, union, and intersec- 
tion of two fuzzy sets A and B are defined as follows. 

We say A and B are equal if and only if pA(x) = p ~ ( x )  for all x E U .  We say 
B contains A, denoted by A c B,  if and only if pA(x) 5 pB(x) for all x E U .  The 
complement of A is a fuzzy set A in U whose membership function is defined as 

The u n i o n  of A and B is a fuzzy set in U ,  denoted by A U B,  whose membership 
function is defined as 

PAUB (XI = ~ ~ X [ P A  (XI, PB (x)] (2.20) 

The in tersect ion of A and B is a fuzzy set A n B in U with membership function 

The reader may wonder why we use "max" for union and "min" for intersection; 
we now give an intuitive explanation. An intuitively appealing way of defining the 
union is the following: the union of A and B is the smallest fuzzy set containing both 
A and B. More precisely, if C is any fuzzy set that contains both A and B, then it 
also contains the union of A and B. To show that this intuitively appealing definition 
is equivalent to (2.20), we note, first, that A U B as defined by (2.20) contains both 
A and B because m a x [ p ~ ,  ,UB] 2: PA and m a x [ p ~ ,  pg] > p ~ .  Furthermore, if C is 
any fuzzy set containing both A and B, then p c  > p~ and p c  > p ~ .  Therefore, 
p c  2 m a x [ p ~ ,  PB] = ~ A U B ,  which means that A U B as defined by (2.20) is the 
smallest fuzzy set containing both A and B. The intersection as defined by (2.21) 
can be justified in the same manner. 
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Figure 2.8. The membership functions for P and F. 

Example 2.5. Consider the two fuzzy sets D and F defined by (2.8) and (2.9) 
(see also Fig. 2.2). The complement of F ,  F ,  is the fuzzy set defined by 

which is shown in Fig. 2.8. Comparing (2.22) with (2.9) we see that F = D. This 
makes sense because if a car is not a non-US car (which is what the complement of 
F means intuitively), then it should be a US car; or more accurately, the less a car 
is a non-US car, the more the car is a US car. The union of F and D is the fuzzy 
set F U D defined by 

which is plotted in Fig. 2.9. The intersection of F and D is the fuzzy set F f l  D 
defined by 

which is plotted in Fig. 2.10. 

With the operations of complement, union and intersection defined as in (2.19), 
(2.20) and (2.21), many of the basic identities (not all!) which hold for classical sets 
can be extended to fuzzy sets. As an example, let us consider the following lemma. 

Lemma 2.2. The De Morgan's Laws are true for fuzzy sets. That is, suppose 
A and B  are fuzzy sets, then 

A U B = A ~ B  (2.25) 
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Figure 2.9. The membership function for F U D, where 
F and D are defined in Fig. 2.2. 

Figure 2.10. The membership function for F n D, where 
F and D are defined in Fig. 2.2. 

and 
A n B = A u B  

Proof: We only prove (2.25); (2.26) can be proven in the same way and is left 
as an exercise. First, we show that the following identity is true: 
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To show this we consider the two possible cases: PA 2 PB and PA < PB. If 
PA > ye, then 1-PA < 1-PB and 1-max[pn,pp] =  PA = m i n [ l - ~ ~ ,  
whichis(2.27). I f p a  < p s , t h e n l - p ~ > l - p ~ a n d l - r n a r [ ~ ~ , p ~ ] = l - p ~ = (  
min[l -PA, 1 -PB], which is again (2.27). Hence, (2.27) is true. From the definitions 
(2.19)-(2.21) and the definition of the equality of two fuzzy sets, we see that (2.27) 
implies (2.25). 

2.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The definitions of fuzzy set, basic concepts associated with a fuzzy set (sup- 
port, a-cut, convexity, etc.) and basic operations (complement, union, inter- 
section, etc.) of fuzzy sets. 

The intuitive meaning of membership functions and how to determine intu- 
itively appealing membership functions for specific fuzzy descriptions. 

Performing operations on specific examples of fuzzy sets and proving basic 
properties concerning fuzzy sets and their operations. 

Zadeh's original paper (Zadeh [1965]) is still the best source to learn fuzzy set 
and related concepts. The paper was extremely well-written and the reader is 
encouraged to read it. The basic operations and concepts associated with a fuzzy 
set were also introquced in Zadeh [1965]. 

2.5 Exercises 

Exercise 2.1. Determine reasonable membership functions for "short persons," 
"tall persons," and "heavy persons." 

Exercise 2.2. Model the following expressions as fuzzy sets: (a) hard-working 
students, (b) top students, and (c) smart students. 

Exercise 2.3. Consider the fuzzy sets F, G and H defined in the interval U = 
[O, 101 by the membership functions 

Determine the mathematical formulas and graphs of membership functions of each 
of the following fuzzy sets: 

(a) F , G , H  
(b) F U G , F U H , G U H  
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(c) F n G , F n H , G n H  

(d) F U G U H , F n G n H  

( e )  F~H,W,- 

Exercise 2.4. Determine the a-cuts of the fuzzy sets F, G and H in Exercise 
2.3 for: (a) a = 0.2, (b) a = 0.5, (c) a = 0.9, and (d) a = 1. 

Exercise 2.5. Let fuzzy set A be defined in the closed plane U = [-I, 11 x [-3,3] 
with membership function 

Determine the projections of A on the hyperplanes HI = {x E Ulxl = 0) and 
H2 = {x E U1x2 = 01, respectively. 

Exercise 2.6. Show that the law of the excluded middle, F U F = U, is not 
true if F is a fuzzy set. 

Exercise 2.7. Prove the identity (2.26) in Lemma 2.2. 

Exercise 2.8. Show that the intersection of two convex fuzzy sets is also a 
convex fuzzy set. What about the union? 



Chapter 3 

Further Operations on Fuzzy 
Sets 

In Chapter 2 we introduced the following basic operators for complement, union, 
and intersection of fuzzy sets: 

We explained that the fuzzy set A U B defined by (3.2) is the smallest fuzzy set 
containing both A and B, and the fuzzy set A n B defined by (3.3) is the largest 
fuzzy set contained by both A and B. Therefore, (3.1)-(3.3) define only one type 
of operations on fuzzy sets. Other possibilities exist. For example, we may define 
A U B as any fuzzy set containing both A and B (not necessarily the smallest fuzzy 
set). In this chapter, we study other types of operators for complement, union, and 
intersection of fuzzy sets. 

Why do we need other types of operators? The main reason is that the operators 
(3.1)-(3.3) may not be satisfactory in some situations. For example, when we take 
the intersection of two fuzzy sets, we may want the larger fuzzy set to have an 
impact on the result. But if we use the min operator of (3.3), the larger fuzzy set 
will have no impact. Another reason is that from a theoretical point of view it is 
interesting to explore what types of operators are possible for fuzzy sets. We know 
that for nonfuzzy sets only one type of operation is possible for complement, union, 
or intersection. For fuzzy sets there are other possibilities. But what are they? 
What are the properties of these new operators? These are the questions we will 
try to answer in this chapter. 

The new operators will be proposed on axiomatic bases. That is, we will start 
with a few axioms that complement, union, or intersection should satisfy in order 
to be qualified as these operations. Then, we will list some particular formulas that 
satisfy these axioms. 
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3.1 Fuzzy Complement 

Let c : [0,1] + [0,1] be a mapping that transforms the membership function of 
fuzzy set A into the membership function of the complement of A, that is, 

In the case of (3.1), c [ p ~  (x)] = 1 - pA(x). In order for the function c to be qualified 
as a complement, it should satisfy at least the following two requirements: 

Axiom cl. c(0) = 1 and c(1) = 0 (boundary condition). 

Axiom c2. For all a, b E [0, 11, if a < b, then c(a) 2 c(b) (nonincreasing con- 
dition), where (and throughout this chapter) a and b denote membership functions 
of some fuzzy sets, say, a = ,UA(X) and b = p~ (x). 

Axiom c l  shows that if an element belongs to a fuzzy set to degree zero (one), 
then it should belong to the complement of this fuzzy set to degree one (zero). 
Axiom c2 requires that an increase in membership value must result in a decrease or 
no change in membership value for the complement. Clearly, any violation of these 
two requirements will result in an operator that is unacceptable as complement. 

Definition 3.1. Any function c : [0, 11 + [O, 11 that satisfies Axioms c l  and c2 
is called a fuzzy complement. 

One class of fuzzy complements is the Sugeno class (Sugeno 119771) defined by 

where X E (-1, oo). For each value of the parameter A, we obtain a particular fuzzy 
complement. It is a simple matter to check that the complement defined by (3.5) 
satisfies Axioms c l  and c2. Fig. 3.1 illustrates this class of fuzzy complements for 
different values of A. Note that when X = 0 it becomes the basic fuzzy complement 
(3.1). 

Another type of fuzzy complement is the Yager class (Yager [1980]) defined by 

where w E (0, oo). For each value of w, we obtain a particular fuzzy complement. It 
is easy to verify that (3.6) satisfies Axioms c l  and c2. Fig. 3.2 illustrates the Yager 
class of fuzzy complements for different values of w. When w = 1, (3.6) becomes 
(3.1). 

3.2 Fuzzy Union-The S-Norms 

Let s : [O, 11 x [O,1] + [0,1] be a mapping that transforms the membership functions 
of fuzzy sets A and B into the membership function of the union of A and B, that 
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Figure 3.1. Sugeno class of fuzzy complements cx(a) for 
different values of A. 

Figure 3.2. Yager class of fuzzy complements %(a) for 
different values of w. 

is, 

S [ P A ( X ) ,  P B ( X ) I  = P A U B ( X )  

In the case of (3.2), s[pA ( x )  , p~ ( x ) ]  = max[pA ( x )  , ,uB ($11. In order for the function 
s to be qualified as an union, it must satisfied at  least the following four require- 
ments: 
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Axiom s l .  s(1 , l )  = 1, s(0, a) = s(a, 0) = a (boundary condition). 

Axiom s2. s(a, b )  = s(b, a) (commutative condition). 

Axiom s3. If a 5 a' and b 5 b', then s(a, b) 5 s(al, b') (nondecreasing condi- 
tion). 

Axiom s4. s(s(a, b ) ,  c) = s(a, s(b, c)) (associative condition). 

Axiom s l  indicates what an union function should be in extreme cases. Axiom 
s2 insures that the order in which the fuzzy sets are combined has no influence 
on the result. Axiom s3 shows a natural requirement for union: an increase in 
membership values in the two fuzzy sets should result in an increase in membership 
value in the union of the two fuzzy sets. Axiom s4 allows us to extend the union 
operations to more than two fuzzy sets. 

Definition 3.2. Any function s : [O, 11 x [O, 11 -+ [O, 11 that satisfies Axioms 
sl-s4 is called an s-norm. 

It is a simple matter to prove that the basic fuzzy union mas of (3.2) is a s-norm. 
We now list three particular classes of s-norms: 

Dombi class (Dombi [1982]): 

where the parameter X E (0, oo). 

a Dubois-Prade class (Dubois and Prade [1980]): 

where the parameter a E [0, 11. 

a Yager class (Yager [1980]): 

where the parameter w E (0, ooj. 

With a particular choice of the parameters, (3.8)-(3.10) each defines a particular 
s-norm. It is straightforward to verify that (3.8)-(3.10) satisfy Axioms sl-s4. These 
s-norms were obtained by generalizing the union operation for classical sets from 
different perspectives. 

Many other s-norms were proposed in the literature. We now list some of them 
below: 
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Drastic sum: 

(3.11) 
1 otherwise 

Einstein sum: 

e Algebraic sum: 
s,,(a, b) = a + b - ab 

Maximum: (3.2) 

Why were so many s-norms proposed in the literature? The theoretical reason 
is that they become identical when the membership values are restricted to zero or 
one; that is, they are all extensions of nonfuzzy set union. The practical reason is 
that some s-norms may be more meaningful than others in some applications. 

Example 3.1: Consider the fuzzy sets D and F defined in Example 2.1 of 
Chapter 2 ((2.8) and (2.9)). If we use the Yager s-norm (3.10) for fuzzy union, then 
the fuzzy set D U F is computed as 

Fig. 3.3 illustrates this pDUF(x) for w = 3. If we use the algebraic sum (3.13) for 
the fuzzy union, the fuzzy set D U F becomes 

which is plotted in Fig. 3.4. 

Comparing Figs. 3.3 and 3.4 with Fig. 2.9, we see that the Yager s-norm and 
algebraic sum are larger than the maximum operator. In general, we can show that 
maximum (3.2) is the smallest s-norm and drastic sum (3.11) is the largest s-norm. 

Theorem 3.1: For any s-norm s, that is, for any function s : [O, 11 x [ O , l ]  + [O, 11 
that satisfies Axioms sl-s4, the following inequality holds: 

for any a,b E [O , l ] .  

Proof: We first prove max(a, b) < s(a, b ) .  Fkom the nondecreasing condition 
Axiom s3 and the boundary condition Axium s l ,  we obtain 
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Figure 3.3. Membership function of DUF using the Yager 
s-norm (3.10) with w = 3. 

Figure 3.4. Membership function of D u F using the al- 
gebraic sum (3.13). 

Furthermore, the commutative condition Axiom s2 gives 

s(a, b) = s(b, a)  2 s(b, 0 )  = b (3.18) 

Combining (3.17) and (3.18) we have s(a, b)  2 max(a, b). 

Next we prove s(a, b) 5 sd,(a, b). If b = 0, then from Axiom s l  we have s(a, b) = 
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s(a, 0) = a,  thus s(a, b) = sd,(a, b). By the commutative condition Axiom s2 we 
have s(a,b) = sd,(a,b) if a = 0. If a # 0 and b # 0, we have 

Thus s(a, b) _< sd,(a, b) for all a, b E [O,l]. 

Finally, we prove an interesting property of the Dombi s-norm sx(a, b) (3.8): 
sx(a, b) converges to the basic fuzzy union max(a, b) as the parameter X goes to 
infinity and converges to the drastic sum sd,(a, b) as X goes to zero. Therefore, the 
Dombi s-norm covers the whole spectrum of s-norms. 

Lemma 3.1: Let sx (a, b) be defined as in (3.8) and sd, (a, b) be defined as in 
(3.11), then 

lirn sx(a, b) = max(a, b) 
X-iw 

(3.20) 

lirn sx(a, b) = sd,(a, b) 
X-tO 

(3.21) 

Proof: We first prove (3.20). If a = b # 0, then from (3.8) we have lirnx,, sx(a, b) = 
limx-tm [1/(1+2-l/'($ - I))] = a = max(a, b). If a = b = 0, then lirnx,, sx(a, b) = 
limx+w 1/(1 + 0-'/') = 0 = max(a, b). If a # b, then without loss of generality 
(due to Axiom s2) we assume a < b. Let z = [(; - l ) -X + ($ - l)-X]-l/X, then 
using 1'Hospital's rule, we have 

ln[(: - I)-' + ($ - I)-'] 
lirn ln(z) = lirn - 

x,w A-- w X 
($ - ~ ) - ~ l n ( ;  - 1) + ( i  - l)-'ln(i - 1) 

= lirn 
X + o o  (; - 1)-A + ( i  - 1)-A . 

[($ - I)/($ - ~ ) ] - ~ l n ( ;  - 1) + l n ( i  - 1) 
= lirn 

X-tw [(i - I)/($ - 1)I-x + 1 
1 

= ln(- - 1) 
b 

(3.22) 

1 Hence, limx,, z = - 1, and 

1 - b = max(a, b) lirn sx(a, b) = lirn - - 
X-+m x-iw 1 + z 

(3.23) 

Next we prove (3.21). If a = 0 and b # 0, we have sx(a, b) = l / [ l + ( i - l ) - x q ]  = 
b = sd,(a, b). By commutativity, we have s,+(a, b) = a = sd,(a, b) if b = 0 and a # 0. 
If a # 0 and b # 0, we have limx,osx(a, b) = limx+o 1/[1+ 2-'/'] = 1 = ~d , ( a ,  b). 
Finally, if a = b = 0, we have limx,o sx(a, b) = limx,o 1/[1+0-~/'] = 0 = sd,(a, b). 

Similarly, it can be shown that the Yager s-norm (3.10) converges to the basic 
fuzzy union max(a, b) as w goes to infinity and converges to the drastic sum sd,(a, b) 
as w goes to zero; the proof is left as an exercise. 
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3.3 Fuzzy Intersection-The T-Norms 

Let t : [O, 11 x [O,1] -+ [O, 11 be a function that transforms the membership functions 
of fuzzy sets A and B into the membership function of the intersection of A and B, 
that is, 

 PA (XI, PB (~11 = P A ~ B  (x) (3.24) 

In the case of (3.3), t[pA(x), ~ B ( x ) ]  = min[,uA(x), pB (x)]. In order for the func- 
tion t to be qualified as an intersection, it must satisfy at least the following four 
requirements: 

Axiom t 1: t(0,O) = 0; t(a, 1) = t(1, a) = a (boundary condition). 

Axiom t2: t(a, b) = t(b, a) (commutativity). 

Axiom t3: If a < a' and b 5 b', then t(a, b) 5 t(al, b') (nondecreasing). 

Axiom t4: t[t(a, b), c] = t[a, t(b, c)] (associativity). 

These axioms can be justified in the same way as for Axioms sl-s4. 

Definition 3.3. Any function t : [O, 11 x [O, 11 -+ [O, 11 that satisfies Axioms 
tl-t4 is called a t-norm. 

We can verify that the basic fuzzy intersection min of (3.3) is a t-norm. For 
any t-norm, there is an s-norm associated with it and vice versa. Hence, associated 

, with the s-norms of Dombi, Dubois-Prade and Yager classes ((3.8)-(3.10)), there ase 
t-norms of Dombi, Dubois-Prade and Yager classes, which are defined as follows: 

Dombi class (Dombi [1982]): 

where X E ( 0 , ~ ) .  

Dubois-Prade class (Dubois and Prade [1980]): 

where a E [0, 11. 

Yager class (Yager [1980]): 

t,(a, b) = 1 - min[l, ((1 - a)" + (1 - b)")'lW] (3.27) 

where w E (0, w). 

With a particular choice of the parameters, (3.25)-(3.27) each defines a particular 
t-norm. We can verify that (3.25)-(3.27) satisfy Axiom tl-t4. Associated with the 
particular s-norms (3.11)-(3.13) and (3.2), there are t-norms that are listed below: 
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Drastic product: 

(3.28) 
0 otherwise 

Einstein product: 
ab 

tep(a, b, = 2 - + b - ab) (3.29) 

Algebraic product: 
tap(a, b) = ab 

Minimum: (3.3) 

Example 3.2: Consider the fuzzy sets D and F defined in Example 2.1 of 
Chapter 2. If we use the Yager t-norm (3.27) for fuzzy intersection, then D n F is 
obtained as 

Fig. 3.5 shows this pDnP(x) for w = 3. If we use the algebraic product (3.30) for 
fuzzy intersection, the fuzzy set D n F becomes 

P D ~ F  (x) = tap [PD (x) , PF (x)] 
= P(x) (~  - P(x)) 

which is plotted in Fig. 3.6. 

Comparing Figs. 3.5 and 3.6 with Fig. 2.10, we see that the Yager t-norm and 
algebraic product are smaller than the minimum operator. In general, we can show 
that minimum is the largest t-norm and drastic product is the smallest t-norm. 

Theorem 3.2: For any t-norm t, that is, for any function t : [O, 11 x [O,1] + [O, 11 
that satisfies Axioms tl-t4, the following inequality holds: 

for any a, b E [O,l]. 

The proof of this theorem is very similar to that of Theorem 3.1 and is left as 
an exercise. Similar to Lemma 3.1, we can show that the Dombi t-norm t ~ ( a ,  b) 
of (3.25) converges to the basic fuzzy intersection min(a, b) as X goes to infinity 
and converges to the drastic product tdp(a, b) as X goes to zero. Hence, the Dombi 
t-norm covers the whole range of t-norms. 

Lemma 3.2: Let tx(a, b)  be defined as in (3.25), then 

lim tx (a, b) = min(a, b) 
x+m 
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Figure 3.5. Membership function of D n F  using the Yager 
t-norm (3.27) with w = 3. 

Figure 3.6. Membership function of D  n F  using the al- 
gebraic product (3.30). 

and 
lim tx(a, b) = td,(a, b) 
X+O 

This lem.ma can be proven in a similar way as for Lemma 3.1. 

Comparing (3.8)-(3.13) with (3.25)-(3.30), respectively, we see that for each s- 
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norm there is a t-norm associated with it. But what does this "associated" mean? 
It means that there exists a fuzzy complement such that the three together satisfy 
the DeMorgan's Law. Specifically, we say the s-norm s(a, b), t-norm t(a, b) and 
fuzzy complement c(a) form an associated class if 

Example 3.3: The Yager s-norm sw(a, b) of (3.10), Yager t-norm tw(a, b) of 
(3.27), and the basic fuzzy complement (3.1) form an associated class. To show 
this, we have from (3.1) and (3.10) that 

c[sw(a, b)] = 1 - min[l, (aw -t bw)l/w] (3.37) 

where c(a) denotes the basic fuzzy complement (3.1). On the other hand, we have 
from (3.1) and (3.27) that 

l?rom (3.37) and (3.38) we obtain (3.36). 

Example 3.4: The algebraic sum (3.13), algebraic product (3.30), and the basic 
fuzzy complement (3.1) form an associated class. To show this, we have from (3.1) 
and (3.13) that 

c[sas(a, b)] = 1 - a - b + ab (3.39) 

On the other hand, from (3.1) and (3.30) we have 

Hence, they satisfy the DeMorgan's Law (3.36). 

3.4 Averaging Operators 

From Theorem 3.1 we see that for any membership values a = , u ~ ( x )  and b = , u ~ ( x )  
of arbitrary fuzzy sets A and B, the membership value of their union AU B (defined 
by any s-norm) lies in the interval [max(a, b), sds(a, b)]. Similarly, from Theorem 
3.2 we have that the membership value of the intersection A n  B (defined by any t- 
norm) lies in the interval [&,(a, b), min(a, b)]. See Fig.3.7. Therefore, the union and 
intersection operators cannot cover the interval between min(a, b) and max(a, b). 
The operators that cover the interval [min(a, b), max(a, b)] are called averaging 
operators. Similar to the s-norms and t-norms, an averaging operator, denoted by 
v, is a function from [0, I] x [0, I] to [0, 11. 

Many averaging operators were proposed in the literature. Here we list four of 
them: 
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nimum j I maximum 
drastlc sum 
Einsteln sum 
algebraic sum 

b ombi t-norm 

@- x * ~  

pager t-norm fuzzy and fuzzy or Yager s-norm 

-'E max-min averages 3-w --% 
1 L i 
I i 

r generalized means 1 
+a + 

t&(a,b) mn(a,b) max(a,b) sds(?b) 

I 

$ intersect~on averaging union 
; operators operators operators 

Figure 3.7. The full scope of fuzzy aggregation operators. 

Max-min averages: 

where X E [ O , l ] .  

where a E R (a # 0 ) .  

"Fuzzy and": 

up (a ,  b) = pmin(a,  b) + ( 1  - p ) ( a +  b) 
2 

where p  € [ O , l ]  

L'FUzzy or" : 

where y E [0, 11. 
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Clearly, the max-min averages cover the whole interval [min(a, b),max(a, b)] 
as the parameter X changes from 0 to 1. The "fuzzy and" covers the range from 
min(a, b) to (a+b)/2, and the "fuzzy or" covers the range from (a+b)/2 to max(a, b). 
It also can be shown that the generalized means cover the whole range from min(a, b) 
to max(a, b) as a changes from -w to m. 

3.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The axiomatic definitions of fuzzy complements, s-norms (fuzzy unions), and 
t-norms (fuzzy intersections). 

Some specific classes of fuzzy complements, s-norms, t-norms, and averaging 
operators, and their properties. 

How to prove various properties of some particular fuzzy complements, s- 
norms, t-norms, and averaging operators. 

The materials in this chapter were extracted from Klir and Yuan [I9951 where 
more details on the operators can be found. Dubois and Prade [I9851 provided a 
very good review of fuzzy union, fuzzy intersection, and averaging operators. 

3.6 Exercises 

Exercise 3.1. The equilibrium of a fuzzy complement c is defined as a E [O,1] 
such that c(a) = a. 

(a) Determine the equilibrium of the Yager fuzzy complement (3.6). 

(b) Prove that every fuzzy complement has at  most one equilibrium. 

(c) Prove that a continuous fuzzy complement has a unique equilibrium. 

Exercise 3.2. Show that the Yager s2norm (3.10) converges to the basic fuzzy 
union (3.2) as w goes to infinity and converges to the drastic sum (3.11) as w goes 
to zero. 

Exercise 3.3. Let the fuzzy sets F and G be defined as in Exercise 2.3. 

(a) Determine the membership functions for F U G and F n G using the Yager 
s-norm (3.10) and t-norm (3.27) with w = 2. 

(b) Using (3.1) as fuzzy complement, algebraic sum (3.13) as fuzzy union, and 
algebraic product (3.30) as fuzzy intersection, compute the membership functions 
for F n G, E n G, and m. 

Exercise 3.4. Prove Theorem 3.2. 
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Exercise 3.5. A fuzzy complement c is said to be involutive if c[c(a)] = a for 

! all a E [0, 11. 

(a)Show that the Sugeno fuzzy complement (3.5) and the Yager fuzzy comple- 
ment (3.6) are involutive. 

(b) Let c be an involutive fuzzy complement and t be any t-norm. Show that 
the operator u : [O, 11 x [O,1]  --+ [0,1] defined by 

is an s-norm. 

(c) Prove that the c, t ,  and u in (b) form an associated class. 

Exercise 3.6. Determine s-norm s,(a, b) such that s,(a, b ) ,  the minimum t- 
norm (3.3), and the Yager complement (3.6) with w = 2 form an associated class. 

Exercise 3.7. Prove that the following triples form an associated class with 
respect to any fuzzy complement c: (a) (min, max, c), and (b) (tdp, sds, c). 

Exercise 3.8. Prove that the generalized means (3.42) become min and max 
operators as a -+ -oo and a: --+ oo, respectively. 



Chapter 4 

Fuzzy Relations and the 
Extension Principle 

4.1 From Classical Relations to Fuzzy Relations 

4.1.1 Relations 

Let U and V be two arbitrary classical (nonfuzzy, crisp) sets. The Cartesian product 
of U and V, denoted by U x V, is the nonfuzzy set of all ordered pairs (u, v) such 
that u E U and v E V; that is, 

U x  V =  { ( u , v ) l u ~  U a n d v  E V )  (4.1) 

Note that the order in which U and V appears is important; that is, if U # V, then 
U x V # V x U. In general, the Cartesian product of arbitrary n nonfuzzy sets 
Ul, U2, ..., U,, denoted by Ul x U2 x .. . x U,, is the nonfuzzy set of all n-tuples 
(ul, u2, ..., u,) such that ui E Ui for i E {1,2, ..., }; that is, 

A (nonfuzzy) relation among (nonfuzzy) sets Ul, U2, ..., Un is a subset of the 
Cartesian product Ul x U2 x . x U,; that is, if we use Q(U1, U2, ..., Un) to  denote 
a relation among Ul, U2, ..., Un, then 

As a special case, a binary relation between (nonfuzzy) sets U and V is a subset of 
the Cartesian product U x V. 

Example 4.1. Let U = {1,2,3} and V = {2,3,4}. Then the cartesian product 
ofU and Vis the  set U x V  = {(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)). 
A relation between U and V is a subset of U x V. For example, let Q(U, V) be a 
relation named "the first element is no smaller than the second element," then 



Sec. 4.1. From Classical Relations to Fuzzy Relations 49 

Because a relation is itself a set, all of the basic set operations can be applied 
to it without modification. Also, we can use the following membership function to 
represent a relation: 

1 if (UI,UZ, . -- ,un)  E Q(Ui,u~i . . . ,Un) 
(4.5) , L L Q ( U I , ~ Z ,  . . . , ~ n )  = 0 otherwise 

For binary relation Q(U, V) defined over U x V which contains finite elements, we 
often collect the values of the membership function ,LLQ into a relational matriq see 
the following example. 

Example 4.1 (Cont'd). The relation Q(U,V) of (4.4) can be represented by 
the following relational matrix: 

A classical relation represents a crisp relationship among sets, that is, either 
there is such a relationship or not. For certain relationships, however, it is difficult 
to give a zero-one assessment; see the following example. 

Example 4.2. Let U = {SanFrancisco, HongKong, Tokyo) and V = {Boston, 
HongKong). We want to define the relational concept %cry far" between these 
two sets of cities. Clearly, classical relations are not useful because the concept 
"very far" is not well-defined in the framework of classical sets and relations. How- 
ever, "very far" does mean something and we should find a numerical system to 
characterize it. If we use a number in the interval [ O , 1 ]  to  represent the degree of 
%cry far," then the concept "very far" may be represented by the following (fuzzy) 
relational matrix: 

v 
Boston H K  

SF 0.3 0.9 
U H K  1 0 

Tokyo 0.95 0.1 

Example 4.2 shows that we need to generalize the concept of classical relation 
in order to formulate more relationships in the real world. The concept of fuzzy 
relation was thus introduced. 

Definition 4.1. A fuzzy relation is a fuzzy set defined in the Cartesian product 
of crisp sets Ul , U2, ..., Un. With the representation scheme (2.5), a fuzzy relation 



50 Fuzzv Relations and the Extension Pr inc i~ le  Ch. 4 

Q in Ul x U2 x . . . x Un is defined as the fuzzy set 

where p~ : Ul x U2 x . . . x Un + [0, 11. 

As a special case, a binary fuzzy relation is a fuzzy set defined in the Cartesian 
product of two crisp sets. A binary relation on a finite Cartesian product is usually 
represented by a fuzzy relational matrix, that is, a matrix whose elements are the 
membership values of the corresponding pairs belonging to the fuzzy relation. For 
example, (4.7) is a fuzzy relational matrix representing the fuzzy relation named 
"very far" between the two groups of cities. 

Example 4.3. Let U and V be the set of real numbers, that is, U = V = R. A 
fuzzy relation "x is approximately equal to y," denoted by AE, may be defined by 
the membership function 

p ~ , y  (x, y ) = e-(x-~)2 14.9) 

Similarly, a fuzzy relation "x is much larger than y," denoted by ML, may be 
defined by the membership function 

Of course, other membership functions may be used to represent these fuzzy rela- 
tions. 

4.1.2 Projections and Cylindric Extensions 

Because a crisp relation is defined in the product space of two or more sets, the 
concepts of projection and cylindric extension were proposed. For example, consider 
the set A = {(x, y) E R21(x - 1)2 + (y - 5 1) which is a relation in U x V = R2. 
Then the projection of A on U is Al = [O, 11 c U, and the projection of A on V 
is AS = [0,1] C V; see Fig. 4.1. The cylindric extension of Al to U x V = R2 is 
AIE = [0,1] x (-00, CO) c R2. These concepts can be extended to fuzzy relations. 

Definition 4.2. Let Q be a fuzzy relation in Ul x . . . x Un and {il, ..., i k )  be 
a subsequence of {1,2, ..., n), then the projection of Q on Uil x . - x Uik is a fuzzy 
relation Q p  in Uil x . . . x Ui, defined by the membership function 

~ ~ p ( ~ i l , . . - , ~ i k )  = max PQ(UI, ..., un) (4.11) 
ujlEUjl,".,~~(n-k)Euj(~-k) 

where {ujl, ..., uj(,-k)) is the complement of {uil, ..., uik) with respect to {ul, ..., u,). 

As a special case, if Q is a binary fuzzy relation in U x V, then the projection 
of Q on U, denoted by Q1, is a fuzzy set in U defined by 
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Figure 4.1. Projections and cylindric extensions of a re- 
lation. 

Note that (4.12) is still valid if Q is a crisp relation. For example, if Q is the crisp 
relation A in Fig. 4.1, then its projection Q1 defined by (4.12) is equal to the Al 
in Fig. 4.1. Hence, the projection of fuzzy relation defined by (4.11) is a natural 
extension of the projection of crisp relation. 

Example 4.4. According to (4.12), the projection of fuzzy relation (4.7) on U 
and V are the fuzzy sets 

and 
Qz = l/Boston + 0.9/HK 

respectively. Similarly, the projections of AE defined by (4.9) on U and V are the 
fuzzy sets 

and 

respectively. Note that AE1 equals the crisp set U and AE2 equals the crisp set V. 

The projection constrains a fuzzy relation to a subspace; conversely, the cylindric 
extension extends a fuzzy relation (or fuzzy set) from a subspace to the whole space. 
Fo,rmally, we have the following definition. 
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Definition 4.3. Let Qp  be a fuzzy relation in Uil x . . . x Uik and {il, ..., ik)  is 
a subsequence of {1,2, ..., n), then the cylindric extension of Qp to Ul x . . . x U, is 
a fuzzy relation Q ~ E  in Ul x . - .  x Un defined by 

As a special case, if Q1 is a fuzzy set in U, then the cylindric extension of Q1 
to U x V is a fuzzy relation QIE in U x V defined by 

The definition (4.17) is also valid for crisp relations; check Fig. 4.1 for an example. 

Example 4.5. Consider the projections Q1 and Q2 in Example 4.4 ((4.13) and 
(4.14)). According to (4.18), their cylindric extensions to U x V are 

QIE = 0.9/(SF, Boston) + 0.9/(SF1 H K )  + l / (HK,  Boston) 

+ l / (HK,  H K )  + O.95/(Tokyo, Boston) 

+0.95/(Tokyo1 H K )  (4.19) 

and 

Q ~ E  = l / (SF,  Boston) + l / (HK,  Boston) + l/(Tokyo, Boston) 

+0.9/(SF, H K )  + 0.9/(HKl H K )  + O.9/(Tokyo, H K )  (4.20) 

Similarly, the cylindric extensions of AE1 and AE2 in (4.15) and (4.16) to U x V 
are 

r 

and 

1/(x, y) = U x V (4.22) 

From Examples 4.4 and 4.5 we see that when we take the projection of a fuzzy 
relation and then cylindrically extend it, we obtain a fuzzy relation that is larger 
than the original one. To characterize this property formally, we first introduce the 
concept of Cartesian product of fuzzy sets. Let A1 , ..., A, be fuzzy sets in Ul , ..., Un, 
respectively. The Cartesian product of Al, ..., A,, denoted by A1 x . .. x A,, is a 
fuzzy relation in Ul x . . . x U, whose membership function is defined as 

where * represents any t-norm operator. 

Lemma 4.1. If Q is a fuzzy relation in Ul x . .. x U, and Q1, ..., Q, are its 
projections on Ul , ..., U,, respectively, then (see Fig. 4.2 for illustration) 
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Figure 4.2. Relation between the Cartesian product and 
intersection of cylindric sets. 

where we use min for the t-norm in the definition (4.23) of Q1 x . . . x Q,. 

Proof: Substituting (4.11) into (4.17), we have 

P Q ~ E  ( ~ 1 ,  ..., ~ n )  = max PQ ( ~ 1 ,  ..., an) (4.25) 
~jl€Uj~,...,Uj(~-k)EU~(~-k) 

Hence, 
Q c QIE 

for all i = 1,2, ..., n,  where QiE is the cylindric extension of Qi to Ul x ... x U,. 
Therefore, if we use min for intersection, we have 

4.2 Compositions of Fuzzy Relations 

Let P(U, V) and Q(V, W) be two crisp binary relations that share a common set 
V. The composition of P and Q, denoted by P o Q, is defined as a relation in 
U x W such that (x, z) E P o Q if and only if there exists at  least one y E V such 
that (x, y) E P and (y, z) E Q. Using the membership function representation of 
relations (see (4.5)), we have an equivalent definition for composition that is given 
in the following lemma. 
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Lemma 4.2. P o Q is the composition of P(U, V) and Q(V, W) if and only if 

PPOQ(X, 2) = yeyt[llp(x, Y), PQ(Y, 211 (4.28) 

for any (x, z) E U x W, where t is any t-norm. 

Proof: We first show that if P o Q  is the composition according to the definition, 
then (4.28) is true. If P o Q is the composition, then (x, z) E P o Q implies that 
there exists y E V such that pp(x, y) = 1 and pQ(y,z) = 1. Hence, ppoQ(x, Z) = 
1 = max,Ev t[pp(x, y), pQ(y, z)], that is, (4.28) is true. If (x, z) # P o Q, then 
for any y E V either pp(x, y) = 0 or pQ(y, Z) = 0. Hence, ppoQ(x, Z) = 0 = 
m a x , ~ ~  t[pp(x, y), pQ(y, z)]. Therefore, (4.28) is true for any (x, z) E U x W. 

Conversely, if (4.28) is true, then (x, z) E P o Q implies m a x , ~ ~  t[pp(x, y), 
pQ(y, z)] = 1, which means that there exists a t  least one y E V such that pP(x, y) = 
pQ(y, z) = 1 (see Axiom t l  in Section 3.3); this is the definition. For (x, z) # P o  Q, 
we have from (4.28) that max, E V  t[pp(x, y), pQ (y, z)] = 0, which means that there 
is no y E V such that pp(x, y) = pQ(y, Z) = 1. Therefore, (4.28) implies that P o  Q 
is the composition according to the definition. 

Now we generalize the concept of composition to fuzzy relations. From Lemma 
4.2 we see that if we use (4.28) to define composition of fuzzy relations (suppose P 
and Q are fuzzy relatioins), then the definition is valid for the special case where P 
and Q are crisp relations. Therefore, we give the following definition. 

Definition 4.4. The composition of fuzzy relations P(U, V) and Q(V, W), de- 
noted by P o  Q, is defined as a fuzzy relation in U x W whose membership function 
is given by (4.28). 

Because the t-norm in (4.28) can take a variety of formulas, for each t-norm 
we obtain a particular composition. The two most commonly used compositions in 
the literature are the so-called max-min composition and max-product composition, 
which are defined as follows: 

The max-min composition of fuzzy relations P(U, V) and Q(V, W) is a fuzzy 
relation P o Q in U x W defined by the membership function 

where (2, z) E U x W. 

The max-product composition of fuzzy relations P(U, V) and Q(V, W) is a 
fuzzy relation P o Q in U x W defined by the membership function 

p p O Q ( ~ ,  = F~;[PP(x, y)pQ(y, z)] (4.30) 

where (x, z) E U x W. 
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We see that the max-min and max-product compositions use minimum and 
algebraic product for the t-norm in the definition (4.28), respectively. We now 
consider two examples for how to compute the compositions. 

Example 4.6. Let U and V be defined as in Example 4.2 and W = {New York City, 
Bei jing). Let P(U, V) denote the fuzzy relation "very far" defined by (4.7). Define 
the fuzzy relation "very near'' in V x W, denoted by Q(V, W), by the relational 
matrix 

W 
NYC Beijing 

V Boston 0.95 0.1 (4.31) 

H K  0.1 0.9 

Using the notation (2.7), we can write P and Q as 

P = 0.3/(SF, Boston) + 0.9/(SF, H K )  + l / (HK,  Boston) 

+O/(HK, H K )  + O.95/(Tokyo, Boston) + O.l/(Tokyo, H K )  (4.32) 
Q = 0.95/(Boston, NYC) + O.l/(Boston, Beijing) + O.l/(HK, NYC) 

+0.9/(HK, Beijing) (4.33) 

We now compute the max-min and max-product compositions of P and Q. First, 
we note that U x W contains six elements: (SF,NYC), (SF,Beijing), (HK,NYC), 
(HK,Beijing), (Tokyo,NYC) and (Tokyo,Beijing). Thus, our task is to determine the 
membership values of p p ~ ~  at these six elements. Using the max-min composition 
(4.29), we have 

p p o ~ ( S F ,  NYC) = max{min[pp(SF, Boston), pQ (Boston, NYC)], 

m i n [ ~ ~ ( s F ,  H K )  , PQ (HK, NYC)]) 
= max[min(0.3,0.95), min(0.9,0.1)] 

= 0.3 (4.34) 

Similarly, we have 

ppoQ (SF, Bei jing) = max{min[pp(SF, Boston), ,UQ (Boston, Bei jing)], 

min[pp (SF, HK),  pQ (HK, Bei jing)]) 

= max[min(0.3,0.1), min(0.9,0.9)] 

= 0.9 (4.35) 

The final P o Q is 

P o Q = 0.3/(SF, NYC) + 0.9/(SF, Beijing) + 0.95/(HK, NYC) 

+O.l/(HK, Beijing) + 0.95/(Tokgo, NYC) 
+O.l/(Tokyo, Bei jing) (4.36) 
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If we use the max-product composition (4.30), then following the same procedure 
as above (replacing min by product), we obtain 

P o Q = 0.285/(SF7 NYC) + 0.81/(SF7 Beijing) + 0.95/(HK, NYC) 

+O.l/(HK, Beijing) + 0.9025/(Tokyo7 NYC) 

+0.095/(Tokyo, Beijing) (4.37) 

From (4.36), (4.37) and the relational matrices (4.7) and (4.31), we see that a 
simpler way to compute P o Q is to use relational matrices and matrix product. 
Specifically, let P and Q be the relational matrices for the fuzzy relations P(U, V) 
and Q(V, W), respectively. Then, the relational matrix for the fuzzy composition 
P o Q can be computed according to the following method: 

For max-min composition, write out each element in the matrix product P Q ,  
but treat each multiplication as a min operation and each addition as a rnax 
operation. 

For max-product composition, write out each element in the matrix product 
PQ,  but treat each addition as a max operation. 

We now check that (4.36) and (4.37) can be obtained by this method. Specifi- 
cally, we have 

for max-min composition, and 

for max-product composition. 

In Example 4.6, the universal sets U, V and W contain a finite number of ele- 
ments. In most engineering applications, however, the U, V and W are real-valued 
spaces that contain an infinite number of elements. We now consider an example 
for computing the composition of fuzzy relations in continuous domains. 

Example 4.7: Let U = V = W = R. Consider the fuzzy relation AE (ap- 
proximately equal) and ML (much larger) defined by (4.9) and (4.10) in Example 
4.3. We now want to determine the composition A E  o ML. Using the max-product 
composition, we have 
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To compute the right hand side of (4.40), we must determine the y E R at which 
e - ( m - ~ ) 2  

l+e-(y-z, achieves its maximum value, where x and z are considered to be fixed 
values in R. The necessary condition for such y is 

Because it is impossible to obtain a closed form solution for (4.41), we cannot further 
simplify (4.40). In practice, for given values of x and z we can first determine the 
numerical solution of (4.41) and then substitute it into (4.40). Comparing this 
example with Example 4.6, we see that fuzzy compositions in continuous domains 
are much more difficult to compute than those in discrete domains. 

4.3 The Extension Principle 

The extension principle is a basic identity that allows the domain of a function to be 
extended from crisp points in U to fuzzy sets in U. More specifically, let f : U -+ V 
be a function from crisp set U to crisp set V. Suppose that a fuzzy set A in U is 
given and we want to determine a fuzzy set B = f (A) in V that is induced by f .  If 
f is an one-to-one mapping, then we can define 

where f-l(y) is the inverse of f ,  that is, f[fF1(y)] = y. If f is not one-to-one, 
then an ambiguity arises when two or more distinct points in U with different 
membership values in A are mapped into the same point in V. For example, we 
may have f (XI) = f (x2) = y but xl # x2 and p ~ ( x 1 )  # PA(x~) ,  SO the right hand 
side of (4.42) may take two different values p ~ ( x 1  = f -l(y)) or ~ A ( X Z  = f 
To resolve this ambiguity, we assign the larger one of the two membership values 
to p ~ ( y ) .  More generally, the membership function for B is defined as 

where f-l(y) denotes the set of all points x E U such that f (x) = y. The identity 
(4.43) is called the eztension principle. 

Example 4.8. Let U = {1,2, ..., 10) and f (x) = x2. Let sma l l  be a fuzzy set 
in U defined by 

sma l l  = 111 + 112 + 0.813 + 0.614 + 0.415 (4.44) 

Then, in consequence of (4.43), we have 
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4.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The concepts of fuzzy relations, projections, and cylindric extensions. 

The max-min and max-product compositions of fuzzy relations. 

The extension principle and its applications. 

The basic ideas of fuzzy relations, projections, cylindric extensions, compositions 
of fuzzy relations, and the extension principle were proposed in Zadeh [1971b] and 
Zadeh [1975]. These original papers of Zadeh were very clearly written and are still 
the best sources to learn these fundamental concepts. 

4.5 Exercises 

Exercise 4.1. Given an n-ary relation, how many different projections of the 
relation can be taken? 

Exercise 4.2. Consider the fuzzy relation Q defined in Ul x . . . x U4 where 
Ul = {a, b, c), U2 = {s, t) ,  U3 = {x, y) and U4 = {i, j): 

(a) Compute the projections of Q on Ul x U2 x U4, Ul x U3 and U4. 

(b) Compute the cylindric extensions of the projections in (a) to Ul x Uz x U3 x U4. 

Exercise 4.3. Consider the three binary fuzzy relations defined by the relational 
matrices: 

0 0.7 0.6 0.6 0 1 0 0.7 
( 3  0 0.2 0.5 0 1 ) , Q 2 =  ( 0 0 0.6 0.1 O . l ) ,  0 

Q 3 = (  0.7 0 0 1 0 1 ) 
(4.46) 

Compute the max-min and max-product compositions Q1 o Q2, Q1 o Q3 and Q1 o 

Q2 0 Q3. 

Exercise 4.4. Consider fuzzy set A = 0.51- 1+0.8/0+1/1+0.4/2 and function 
f (x) = x2. Determine the fuzzy set f (A) using the extension principle. 

Exercise 4.5. Compute the pAEoML($ ,  Z) in Example 4.7 for (x, Z) = (0, O), (0, I), 
(1, O), (171). 



Chapter 5 

Linguistic Variables and Fuzzy 
IF-THEN Rules 

5.1 From Numerical Variables to Linguistic Variables 

In our daily life, words are often used to describe variables. For example, when 
we say "today is hot," or equivalently, "today's temperature is high," we use the 
word "high" to describe the variable "today's temperature." That is, the variable 
"today's temperature7' takes the word "high" as its value. Clearly, the variable "to- 
day's temperature" also can take numbers like 25Oc, lgOc, etc., as its values. When 
a variable takes numbers as its values, we have a well-established mathematical 
framework to formulate it. But when a variable takes words as its values, we do 
not have a formal framework to formulate it in classical mathematical theory. In 
order to provide such a formal framework, the concept of linguistic variables was 
introduced. Roughly speaking, if a variable can take words in natural languages as 
its values, it is called a linguistic variable. Now the question is how to formulate 
the words in mathematical terms? Here we use fuzzy sets to characterize the words. 
Thus, we have the following definition. 

Definition 5.1. If a variable can take words in natural languages as its values, 
it is called a linguistic variable, where the words are characterized by fuzzy sets 
defined in the universe of discourse in which the variable is defined. 

Example 5.1. The speed of a car is a variable x that takes values in the interval 
[0, Vmas], where V,,, is the maximum speed of the car. We now define three fuzzy 
sets "slow," "medium," and "fast" in [0, V,,,] as shown in Fig. 5.1. If we view x 
as a linguistic variable, then it can take "slow," "medium" and "fast" as its values. 
That is, we can say "x is slow," "x is medium," and "x is fast." Of course, x also 
can take numbers in the interval [0, Vma,] as its values, for example, x = 50mph, 
35mph, etc. 

Definition 5.1 gives a simple and intuitive definition for linguistic variables. In 
the fuzzy theory literature, a more formal definition of linguistic variables was usu- 
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I slow medium fast 

Figure 5.1. The speed of a car as a linguistic variable 
that can take fuzzy sets "slow," "medium" and "fast" as 
its values. 

ally employed (Zadeh [I9731 and [1975]). This definition is given below. 

Definition 5.2. A linguistic variable is characterized by (X, T, U, M ) ,  where: 

X is the name of the linguistic variable; in Example 5.1, X is the speed of the 
car. \ 

T is the set of linguistic values that X can take; in Example 5.1, T = {slow, 
medium, fast). 

U is the actual physical domain in which the linguistic variable X takes its 
quantitative (crisp) values; in Example 5.1, U = [0, V,,,]. 

M is a semantic rule that relates each linguistic value in T with a fuzzy 
set in U; in Example 5.1, M relates "slow," "medium," and "fast" with the 
membership functions shown in Fig. 5.1. 

Comparing Definitions 5.1 with 5.2, we see that they are essentially equivalent. 
Definition 5.1 is more intuitive, whereas Definition 5.2 looks more formal. From 
these definitions we see that linguistic variables are extensions of numerical variables 
in the sense that they are allowed to take fuzzy sets as their values; see Fig. 5.2. 

Why is the concept of linguistic variable important? Because linguistic variables 
are the most fundamental elements in human knowledge representation. When we 
use sensors to measure a variable, they give us numbers; when we ask human experts 
to evaluate a variable, they give us words. For example, when we use a radar gun 
to measure the speed of a car, it gives us numbers like 39mph,42mph, etc.; when 
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numerical variable linguistic variable 

Figure 5.2. From numerical variable to linguistic variable. 

we ask a human to tell us about the speed of the car, he/she often tells us in words 
like "it's slow," "it's fast," etc. Hence, by introducing the concept of linguistic 
variables, we are able to formulate vague descriptions in natural languages in precise 
mathematical terms. This is the first step to incorporate human knowledge into 
engineering systems in a systematic and efficient manner. 

5.2 Linguistic Hedges 

With the concept of linguistic variables, we are able to take words as values of 
(linguistic) variables. In our daily life, we often use more than one word to describe 
a variable. For example, if we view the speed of a car as a linguistic variable, then 
its values might be "not slow," "very slow," "slightly fast," "more or less medium," 
etc. In general, the value of a linguistic variable is a composite term x = ~ 1 x 2  . . .x, 
that is a concatenation of atomic terms xl,x2, ..., x,. These atomic terms may be 
classified into three groups: 

Primary terms, which are labels of fuzzy sets; in Example 5.1, they are LLslow," 
"medium," and "fast." 

Complement "not" and connections "and" and "or." 

Hedges, such as "very," L'slightly," "more or less," etc. 

The terms "not," "and," and "or" were studied in Chapters 2 and 3. Our task 
now is to characterize hedges. 



6 2 Linnuistic Variables and Fuzzv IF-THEN Rules Ch. 5 

Although in its everyday use the hedge very does not have a well-defined mean- 
ing, in essence it acts as an intensifier. In this spirit, we have the following definition 
for the two most commonly used hedges: very and more or less. 

Definition 5.3. Let A be a fuzzy set in U, then very A is defined as a fuzzy 
set in U with the membership function 

and more or less A is a fuzzy set in U with the membership function 

Example 5.2. Let U = {1,2, ..., 5) and the fuzzy set small be defined as 

small = 111 + 0.812 + 0.613 + 0.414 + 0.215 (5-3) 

Then, according to (5.1) and (5.2), we have 

very small = 111 + 0.6412 + 0.3613 + 0.1614 + 0.0415 (5.4) 
very very small = very (very small) 

= 111 + 0.409612 + 0.129613 + 0.025614 

+0.0016/5 (5.5) 

more or less small = 111 + 0.894412 + 0.774613 + 0.632514 

+0.4472/5 (5.6) 

5.3 Fuzzy IF-THEN Rules 

In Chapter 1 we mentioned that in fuzzy systems and control, human knowledge is 
represented in terms of fuzzy IF-THEN rules. A fuzzy IF- THEN rule is a conditional 
statement expressed as 

I F  < f u z zy  proposition >, T H E N  < fuzzy proposition > (5.7) 

Therefore, in order to understand fuzzy IF-THEN rules, we first must know what 
are fuzzy propositions. 

5.3.1 Fuzzy Propositions 

There are two types of fuzzy propositions: atomic fuzzy propositions, and compound 
fuzzy propositions. An atomic fuzzy proposition is a single statement 
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where x is a linguistic variable, and A is a linguistic value of x (that is, A is 
a fuzzy set defined in the physical domain of x). A compound fuzzy proposition 
is a composition of atomic fuzzy propositions using the connectives "and," "or," 
and "not" which represent fuzzy intersection, fuzzy union, and fuzzy complement, 
respectively. For example, if x represents the speed of the car in Example 5.1, then 
the following are fuzzy propositions (the first three are atomic fuzzy propositions 
and the last three are compound fuzzy propositions): 

x i s  s (5.9) 

x i s  M (5.10) 

x i s  F (5.11) 

x i s  S or x i s  not M (5.12) 

x i s  not S and x i s  not F (5.13) 

(x i s  S and x i s  not F )  or x i s  M (5.14) 

where S, M and F denote the fuzzy sets "slow," "medium," and "fast," respectively. 

Note that in a compound fuzzy proposition, the atomic fuzzy propositions are 
independent, that is, the x's in the same proposition of (5.12)-(5.14) can be different 
variables. Actually, the linguistic variables in a compound fuzzy proposition are in 
general not the same. For example, let x be the speed of a car and y = x be the 
acceleration of the car, then if we define fuzzy set large(L)  for the acceleration, the 
following is a compound fuzzy proposition 

x i s  F and y i s  L 

Therefore, compound fuzzy propositions should be understood as fuzzy relations. How 
to determine the membership functions of these fuzzy relations? 

For connective "and" use fuzzy intersections. Specifically, let x and y be 
linguistic variables in the physical domains U and V, and A and B be fuzzy 
sets in U and V, respectively, then the compound fuzzy proposition 

x i s  A and y i s  B (5.15) 

is interpreted as the fuzzy relation A n  B in U x V with membership function 

where t : [ O , 1 ]  x [O,1]  + [O, 11 is any t-norm. 

For connective "or" use fuzzy unions. Specifically, the compound fuzzy propo- 
sition 

x i s  A or y i s  B (5.17) 

lNote that in Chapters 2 and 3, A and B are fuzzy sets defined in the same universal set U 
and A U B and A n B are fuzzy sets in U ;  here, A U B and A 17 B are fuzzy relations in U x V, 
where U may or may not equal V. 



64 Linguistic Variables and Fuzzy IF-THEN Rules Ch. 5 

is interpreted as the fuzzy relation A U B in U x V with membership function 

where s : [O, 11 x [0, I] -+ [O, 11 is any s-norm. 

0 For connective "not" use fuzzy complements. That is, replace not A by A, 
which is defined according to the complement operators in Chapter 3. 

Example 5.3. The fuzzy proposition (5.14), that is, 

F P  = (x is  S and x i s  not F )  or x i s  M (5.19) 

is a fuzzy relation in the product space [O, V,,,l3 with the membership function 

where s, t and c are s-norm, t-norm and fuzzy complement operators, respectively, 
the fuzzy sets S = small, M = medium, and F = f a s t  are defined in Fig. 5.1, and 
2 1  = 2 2  = x 3  = x .  

We are now ready to interpret the fuzzy IF-THEN rules in the form of (5.7). 

5.3.2 Interpretations of Fuzzy IF-THEN Rules 

Because the fuzzy propositions are interpreted as fuzzy relations, the key question 
remaining is how to interpret the IF-THEN operation. In classical propositional 
calculus, the expression IF p THEN q  is written as p -+ q  with the implication 
-+ regarded as a connective defined by Table 5.1, where p and q  are propositional 
variables whose values are either truth (T) or false (F). From Table 5.1 we see that 
if both p and q  are true or false, then p -+ q  is true; if p is true and q  is false, then 
p --t q  is false; and, if p is false and q  is true, then p -+ q  is true. Hence, p --t q  is 
equivalent to 

P V q  (5.21) 

and 
C P A ~ ) V P  

in the sense that they share the same truth table (Table 5.1) as p -+ q, where; V 
and A  represent (classical) logic operations "not," "or," and "and," respectively. 

Because fuzzy IF-THEN rules can be viewed as replacing the p and q  with fuzzy 
propositions, we can interpret the fuzzy IF-THEN rules by replacing the; V  and 

\, A  operators in (5.21) and (5.22) with fuzzy complement, fuzzy union, and fuzzy 
intersection, respectively. Since there are a wide variety of fuzzy complement, fuzzy 
union, and fuzzy intersection operators, a number of different interpretations of 
fuzzy IF-THEN rules were proposed in the literature. We list some of them below. 
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Table 5.1. Truth table for p + q 

In the following, we rewrite (5.7) as I F  < FPl > T H E N  < FP2 > and 
replace the p and q in (5.21) and (5.22) by FPl and FP2, respectively, where FPl 
and FP2 are fuzzy propositions. We assume that FPl is a fuzzy relation defined in 
tJ = Ul x . . . x U,, FP2 is a fuzzy relation defined in V = Vl x . . . x V,, and x and 
y are linguistic variables (vectors) in U and V, respectively. 

Dienes-Rescher Implication: If we replace the logic operators - and V in 
(5.21) by the basic fuzzy complement (3.1) and the basic fuzzy union (3.2), 
respectively, then we obtain the so-called Dienes-Rescher implication. Specifi- 
cally, the fuzzy IF-THEN rule IF  < FPl > THEN < FP2 > is interpreted 
as a fuzzy relation Q D  in U x V with the membership function 

e Lukasiewicz Implication: If we use the Yager s-norm (3.10) with w = 1 
for the V and basic fuzzy complement (3.1) for the-in (5.21), we obtain the 
Lukasiewicz implication. Specifically, the fuzzy IF-THEN rule I F  < FPl > 
T H E N  < FP2 > is interpreted as a fuzzy relation Q L  in U x V with the 
membership function 

Zadeh Implication: Here the fuzzy IF-THEN rule I F  < FPl > THEN < 
FP2 > is interpreted as a fuzzy relation Qz in U x V with the membership 
function 

Clearly, (5.25) is obtained from (5.22) by using basic fuzzy complement (3.1), 
basic fuzzy union (3.2), and basic fuzzy intersection (3.3) for -V and A, re- 
spectively. 

Giidel Implication: The Godel implication is a well-known implication for- 
mula in classical logic. By generalizing it to fuzzy propositions, we obtain 
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the following: the fuzzy IF-THEN rule IF < FPl > T H E N  < FP2 > is 
interpreted as a fuzzy relation QG in U x V with the membership function 

if PFPI (x) < PFPZ(Y) 
'QG (x'y) = { PFP, (y) otherwise 

It is interesting to explore the relationship among these implications. The fol- 
lowing lemma shows that the Zadeh implication is smaller than the Dienes-Rescher 
implication, which is smaller than the Lukasiewicz implication. 

Lemma 5.1. For all (x, y) E U x V, the following is true 

Proof: Since 0 I 1 - ~ F P ~  (x) I 1 and 0 5 p ~ p , ( y )  5 1, we have max[l - 
PFPI (XI, PFPZ (Y)] I 1 - PFP~ (2) + PFP, (Y) and max[l - p ~ q  (x), pFp2 (y)] 5 1. 
Hence, PQD (x, Y) = m a 4 1  - PFPI (x), PFP~ (Y)] < min[l,  1 - pFp1 (x) + p ~ p ,  (y)] = 
PQL (x, Y). Since min [P~p ,  (XI, PFP, (Y)] I PFP, (y), we have max[min(pFpl (x), 
PFPz (Y)), ~ -PFPI  (211 5 ~ ~ X [ P F P ,  (Y), 1 - ~ F P ,  (x)], which is PQ, (x, 9) 5 p~~ (x, y) . 

Conceptually, we can replace the ; V and A in (5.21) and (5.22) by any fuzzy 
complement, s-norm and t-norm, respectively, to obtain a particular interpretation. 
So a question arises: Based on what criteria do we choose the combination of 
fuzzy complements, s-norms, and t-norms? This is an important question and we 
will discuss it in Chapters 7-10. Another question is: Are (5.21) and (5.22) still 
"equivalent" to p -+ q when p and q are fuzzy propositions and what does this 
"equivalent" mean? We now try to answer this question. When p and q are crisp 
propositions (that is, p and q are either true or false), p + q is a global implication 
in the sense that Table 5.1 covers all the possible cases. However, when p and q are 
fuzzy propositions, p + q may only be a local implication in the sense that p + q 
has large truth value only when both p and q have large truth values. For example, 
when we say "IF speed is high, THEN resistance is high," we are concerned only 
with a local situation in the sense that this rule tells us nothing about the situations 
when "speed is slow," "speed is medium," etc. Therefore, the fuzzy IF-THEN rule 

I F  < FPl > T H E N  < FP2 > (5.28) 

should be interpreted as 

IF < FPl > T H E N  < FP2 > ELSE < NOTHING > (5.29) 

where NOTHING means that this rule does not exist. In logic terms, it becomes 

Using min or algebraic product for the A in (5.30), we obtain the Mamdani impli- 
cations. 
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Mamdani Implications: The fuzzy IF-THEN rule (5.28) is interpreted as 
a fuzzy relation QMM or QMp in U x V with the membership function 

Mamdani implications are the most widely used implications in fuzzy systems 
and fuzzy control. They are supported by the argument that fuzzy IF-THEN rules 
are local. However, one may not agree with this argument. For example, one 
may argue that when we say "IF speed is high, THEN resistance is high," we 
implicitly indicate that "IF speed is slow, THEN resistance is low." In this sense, 
fuzzy IF-THEN rules are nonlocal. This kind of debate indicates that when we 
represent human knowledge in terms of fuzzy IF-THEN rules, different people have 
different interpretations. Consequently, different implications are needed to cope 
with the diversity of interpretations. For example, if the human experts think that 
their rules are local, then the Mamdani implications should be used; otherwise, the 
global implications (5.23)- (5.26) should be considered. 

We now consider some examples for the computation of Q D ,  QL, Qz, QMM and 
QMP. 

Example 5.4. Let xl be the speed of a car, x2 be the acceleration, and y be 
the force applied to the accelerator. Consider the following fuzzy IF-THEN rule: 

IF xl i s  slow and 2 2  i s  small, THEN y is large (5.33) 

where "slow" is the fuzzy set defined in Fig. 5.1, that is, 

"small" is a fuzzy set in the domain of acceleration with the membership function 

and "large" is a fuzzy set in the domain of force applied to the accelerator with the 
membership function 

Let the domains of XI, 2 2  and y be Ul = [O, 1001, U2 = [O, 301, and V = [O, 31, 
respectively. If we use algebraic product for the t-norm in (5.16), then the fuzzy 
proposition 

FPl = $1 i s  slow and xz i s  small (5.37) 
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f slow, 

Figure 5.3. Illustration for how to compute 
f is iour ( x l ) ~ s r n a ~ ~ ( x ~ )  in Example 5.4. 

is a fuzzy relation in Ul x U2 with the membership function 

PFP~ (XI, ~ 2 )  = P ~ Z ~ ~ ( X ~ ) P ~ ~ ~ Z Z ( X ~ )  
0 if xl 2 5 5 o r x 2  > 10 a if $1 5 35 and z2 5 10 (5.38) 

= {* if 35 < X I  5 55 and ~2 5 10 

Fig. 5.3 illustrates how to compute ~ F P ,  ($1, x2). 

If we use the Dienes-Rescher implication (5.23), then the fuzzy IF-THEN rule 
(5.33) is interpreted as a fuzzy relation Q D ( X ~ , X ~ ,  y) in Ul x U2 x V with the 
membership function 

From (5.38) we have 

1 if XI 2 5 5 0 ~ x 2  > 1 0  
1 - P F P ~ ( x ~ , ~ ~ )  = 22/10 if XI  5 35 and x2 f 10 (5.40) 

1 - (55-x~)(lO-xz) 
200 if 35 < XI 5 55 and 2 2  5 10 

To help us combi&ng 1 - p ~ q  (XI, x2) of (5.40) with ~,, , ,(y) of (5.36) using the 
max operator, we illustrate in Fig. 5.4 the division of the domains of 1-pFp, (XI, 22) 
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Figure 5.4. Division of the domains of 1 - p . 1 ~ ~ ~  (XI, 22) 

and pl,,,,(y) and their combinations for Example 5.4. 

and pl,,,,(y) and their combinations. From Fig. 5.4, we obtain 

For Lukasiewicz, Zadeh and Mamdani implications, we can use the same procedure 
to determine the membership functions. [7 

P Q D ( X ~ , X ~ , Y )  = 

From Example 5.4 we see that if the membership functions in the atomic fuzzy 
propositions are not smooth functions (for example, (5.34)-(5.36)), the computation 
of the final membership functions p ~ ~ ,  p ~ ~ ,  etc., is cumbersome, although it is 
straightforward. A way to resolve this complexity is to use a single smooth function 
to  approximate the nonsmooth functions; see the following example. 

i 

/ 1 if $1 >_ 55 or x2 > 10 or y > 2 
~ 2 1 1 0  if XI 5 35 and x2 5 10 and y 5 1 

1 - (55-"1)(10-"2) 
200 if 35 < 21 5 55 and x2 5 10 

and y 5 1 
max[y - 1, xz/10] if XI < 35 and 2 2  5 10 

(5.41) 

a n d l < y  5 2  
max[y - 1 ,1  - (55-"1)(10-"2) 

200 ] if 35 < XI L 55 and 2 2  5 10 
1 a n d l < y s 2  
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Example 5.4 (Cont 'd). Suppose we use 

to approximate the ps lOw(xl )  of (5 .34) ,  

to approximate the ps,,s(x2) of (5 .35) ,  and 

to approximate the pl,,,,(y) of (5.36) .  Now if we use Mamdani product implication 
(5.32) and algebraic product for the t-norm in (5 .16) ,  then the membership function 
p~~~ ( ~ 1 ~ x 2 ,  y )  can be easly computed as 

Example 5.5. Let U = { 1 , 2 , 3 , 4 )  and V = { 1 , 2 , 3 ) .  Suppose we know that 
x E U is somewhat inversely propositional to y E V. To formulate this knowledge, 
we may use the following fuzzy IF-THEN rule: 

IF x is  large, T H E N  y is small (5.46)  

where the fuzzy sets "large" and "small" are defined as 

large = 011 + 0.112 + 0 . 5 / 3  + 114 (5.47)  
small = 111 + 0,512 + 0 : 1 / 3  (5.48) 

If we use the Dienes-Rescher implication (5.23) ,  then the fuzzy IF-THEN rule 
(5.46)  is interpreted as the following fuzzy relation QD in U x V: 

If we use the Lukasiewicz implication (5 .24) ,  the rule (5.46)  becomes 
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For the Zadeh implication (5.25) and the Godel implication (5.26), we have 

Qz = 1/(1,1) + 1/(1,2) + 1/(1,3) + 0.9/(2,1) + 0.9/(2,2) + 0.9/(2,3) 
+0.5/(3,1) + 0.5/(3,2) + 0.5/(3,3) + 1/(4,1) 

+0.5/(4,2) + 0.1/(4,3) (5.51) 

and 

QG = 1/(1,1) + 1/(1,2) + 1/(1,3) + 1/(2,1) + 1/(2,2) + 1/(2,3) + 1/(3,1) 
+1/(3,2) + 0.1/(3,3) + 1/(4,1) + 0.5/(4,2) + 0.1/(4,3) (5.52) 

Finally, if we use the Mamdani implication (5.31) and (5.32), then the fuzzy IF- 
THEN rule (5.46) becomes 

QMM = 0/(1,1) + 0/(1,2) + 0/(1,3) + 0.1/(2,1) + 0.1/(2,2) 
+0.1/(2,3) +0.5/(3,1) +0.5/(3,2) +0.1/(3,3) 

+1/(4,1) + 0.5/(4,2) + 0.1/(4,3) (5.53) 

and 

QMP = 0/(1,1) + 0/(1,2) + 0/(1,3) + 0.1/(2,1) + 0.05/(2,2) 
+0.01/(2,3) + 0.5/(3,1) + 0.25/(3,2) + 0.05/(3,3) 

+1/(4,1) + 0.5/(4,2) + 0.1/(4,3) (5.54) 

From (5.49)-(5.52) we see that for the combinations not covered by the rule (5.46), 
that is, the pairs (1, l ) ,  (1,2) and (1,3) (because pl,,,,(l) = 0), QD, QL, QZ and 
QG give full membership value to them, but QMM and QMp give zero member- 
ship value. This is consistent with our earlier discussion that Dienes-Rescher, 
Lukasiewicz, Zadeh and Godel implications are global, whereas Marndani impli- 
cations are local. 

5.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The concept of linguistic variables and the characterization of hedges. 

The concept of fuzzy propositions and fuzzy IF-THEN rules. 

Different interpretations of fuzzy IF-THEN rules, including Dienes-Rescher, 
Lukasiewicz, Zadeh, Godel and Mamdani implications. 

Properties and computation of these implications. 

Linguistic variables were introduced in Zadeh's seminal paper Zadeh [1973]. 
This paper is another piece of art and the reader is highly recommended to study 
it. The comprehensive three-part paper Zadeh [I9751 summarized many concepts 
and principles associated with linguistic variables. 
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5.5 Exercises 

Exercise 5.1. Give three examples of linguistic variables. Combine these lin- 
guistic variables into a compound fuzzy proposition and determine its membership 
function. 

Exercise 5.2. Consider some other linguistic hedges than those in Section 5.2 
and propose reas~nable operations that represent them. 

Exercise 5.3. Let QL, QG, QMM and QMP be the fuzzy relations defined in 
(5.24), (5.26), (5.31), and (5.32), respectively. Show that 

Exercise 5.4. Use basic fuzzy operators (3.1)-(3.3) for "not," "or," and "and," 
respectively, and determine the membership functions for the fuzzy propositions 
(5.12) and (5.13). Plot these membership functions. 

Exercise 5.5. Consider the fuzzy IF-THEN rule (5.33) with the fuzzy sets 
L L ~ l o ~ , 7 '  "small" and "large" defined by (5.42), (5.43) and (5.44), respectively. Use 
m i n  for the t-norm in (5.16) and compute the fuzzy relations QD, &L, Qz,  QG, QMM 

and QMP. 

Exercise 5.6. Let Q be a fuzzy relation in U x U .  Q is called reflexive if 
pQ(u, u) = 1 for all u E U .  Show that if Q is reflexive, then: (a) Q o Q is also 
reflexive, and (b) Q Q o Q, where o denotes max - min composition. 



Chapter 6 

Fuzzy Logic and Approximate 
Reasoning 

6.1 From Classical Logic to Fuzzy Logic 

Logic is the study of methods and principles of reasoning, where reasoning means 
obtaining new propositions from existing propositions. In classical logic, the propo- 
sitions are required to be either true or false, that is, the truth value of a proposition 
is either 0 or 1. Fuzzy logic generalizes classical two-value logic by allowing the truth 
values of a proposition to be any number in the interval [0, 11. This generalization 
allows us to perform approximate reasoning, that is, deducing imprecise conclusions 
(fuzzy propositions) from a collection of imprecise premises (fuzzy propositions). 
In this chapter, we first review some basic concepts and principles in classical logic 
and then study their generalization to fuzzy logic. 

6.1.1 Short Primer on Classical Logic 

In classical logic, the relationships between propositions are usually represented 
by a truth table. The fundamental truth table for conjunction V ,  disjunction A,  
implication -+, equivalence +, and negation - are collected together in Table 6.1, 
where the symbols T and F denote truth and false, respectively. 

Given n basic propositions p l ,  ...,p,, a new proposition can be defined by a 
function that assigns a particular truth value to the new proposition for each com- 
bination of truth values of the given propositions. The new proposition is usually 
called a logic function. Since n propositions can assume 2n possible combinations of 
truth values, there are 22n possible logic functions defining n propositions. Because 
22* is a huge number for large n, a key issue in classical logic is to express all the 
logic functions with only a few basic logic operations; such basic logic operations 
are called a complete set of primitives. The most commonly used complete set of 
primitives is negation-, conjunction V, and disjunction A. By combining; V and A 
in appropriate algebraic expressions, referred to as logic formulas, we can form any 
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Table 6.1. Truth table for five operations that are frequently applied to 
propositions. 

other logic function. Logic formulas are defined recursively as follows: 

The truth values 0 and 1 are logic formulas. 

If p is a proposition, then p and p are logic formulas. 

If p and q are logic formulas, then p V q and p A q are also logic formulas. 

The only logic formulas are those defined by (a)-(c). 

When the proposition represented by a logic formula is always true regardless of 
the truth values of the basic propositions participating in the formula, it is called a 
tautology; when it is always false, it is called a contradiction. 

Example 6.1. The following logic formulas are tautologies: 

To prove (6.1) and (6.2), we use the truth table method, that is, we list all the 
possible values of (6.1) and (6.2) and see whether they are all true. Table 6.2 shows 
the results, which indicates that (6.1) and (6.2) are tautologies. 

Table 6.2. Proof of ( p  + q )  ++ ( p  V q )  and ( p  + q) t+ ( ( p  A q )  V p). 

Various forms of tautologies can be used for making deductive inferences. They 
are referred to as inference rules. The three most commonly used inference rules 
are: 
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Modus Ponens: This inference rule states that given two propositions p 
and p -+ q (called the premises), the truth of the proposition q (called the 
conclusion) should be inferred. Symbolically, it is represented as 

A more intuitive representation of modus ponens is 

Premise 1 : x is A 
Premise 2 : IF  x is A T H E N  y is B 

Conclusion : y is B 

Modus Tollens: This inference rule states that given two propositions q and 
p -+ q, the truth of the proposition p should be inferred. Symbolically, it 
becomes 

(QA  (P+ q)) - + P  (6.4) 

A more intuitive representation of modus tollens is 

Premise 1 : 7~ is not B 

Premise 2 : IF x i s  A T H E N  y is B 
Conclusion : x is not A 

Hypothetical Syllogism: This inference rule states that given two propos- 
tions p -+ q and q -+ r ,  the truth of the proposition p t r should be inferred. 
Symbolically, we have 

A more intuitive representation of it is 

Premise 1 : IF  x is A T H E N  y is B 
Premise 2 : IF y i s  B T H E N  z is C 

Conclusion : IF  x is A T H E N  z is C 

6.1.2 Basic Principles in Fuzzy Logic 

In fuzzy logic, the propositions are fuzzy propositions that, as defined in Chapter 
5 ,  are represented by fuzzy sets. The ultimate goal of fuzzy logic is to  provide 
foundations for approximate reasoning with imprecise propositions using fuzzy set 
theory as the principal tool. To achieve this goal, the so-called generalized modus 
ponens, generalized modus tollens, and generalized hypothetical syllogism were pro- 
posed. They are the fundamental principles in fuzzy logic. 
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Generalized Modus  Ponens: This inference rule states that given two 
fuzzy propositions x is A' and IF x is A THEN y is B, we should infer a new 
fuzzy proposition y is B' such that the closer the A' to A, the closer the B' 
to B, where A, A', B and B' are fuzzy sets; that is, 

Premise 1 : x i s  A' 
Premise 2 : I F  x i s  A T H E N  y i s  B 

Conclusion : y i s  B' 

Table 6.3 shows the intuitive criteria relating Premise 1 and the Conclusion 
in generalized modus ponens. We note that if a causal relation between "x 
is A" and "y is B" is not strong in Premise 2, the satisfaction of criterion p3 
and criterion p5 is allowed. Criterion p7 is interpreted as: "IF x is A THEN 
y is B, ELSE y is not B." Although this relation is not valid in classical logic, 
we often make such an interpretation in everyday reasoning. 

Table 6.3. Intuitive criteria relating Premise 1 and the Conclusion for given 
Premise 2 in generalized modus ponens. 

Generalized Modus  Tollens: This inference rule states that given two 
fuzzy propositions y is B' and IF x is A THEN y is B, we should infer a new 
fuzzy proposition x is A' such that the more difference between B' and B ,  the 
more difference between A' and A, where A', A, B' and B are fuzzy sets; that 
is, 

criterion p l  
criterion p2 
criterion p3 
criterion p4 
criterion p5 
criterion p6 
criterion p7 

Premise 1 : y i s  B' 
Premise 2 : I F  x i s  A T H E N  y i s  B 

Conclusion : x i s  A' 

Table 6.4 shows some intuitive criteria relating Premise 1 and the Conclusion 
in generalized modus tollens. Similar to the criteria in Table 6.3, some criteria 
in Table 6.4 are not true in classical logic, but we use them approximately in 
our daily life. 

x is A' (Premise 1) 
x is A 

x is very A 
x is very A 

x is more or less A 
x is more or less A 

x is not A 
x is not A 

y is B' (Conclusion) 
y is B 

y is very B 
y is B 

y is more or less B 
y is B 

y is unknown 
y is not B 
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Table 6.4. Intuitive criteria relating Premise 1 and the Conclusion for given 
Premise 2 in generalized modus tollens. 

criterion t2 y is not very B x is not very A 

criterion t4 y is B x is unknown 

Generalized Hypothetical Syllogism: This inference rule states that given 
two fuzzy propositions IF x is A THEN y is B and IF y is B' THEN z is C, 
we could infer a new fuzzy proposition IF x is A THEN z is C' such that the 
closer the B to  B', the closer the C' to  C, where A, B ,  B', C and C' are fuzzy 
sets; that is, 

Premise 1 : I F  x i s  A T H E N  y i s  B 

Premise 2 : I F  y i s  B' T H E N  z i s  C 

Conclusion : I F  x i s  A T H E N  z is  C' 

Table 6.5 shows some intuitive criteria relating y is B' with z is C' in the 
generalized hypothetical syllogism. Criteria s2 is obtained from the following 
intuition: To match the B in Premise 1 with the B' = very B in Premise 2, 
we may change Premise 1 to IF x is very A THEN y is very B, so we have 
IF x is very A THEN z is C. By applying the hedge more or less to  cancel 
the very, we have IF x is A THEN z is more or less C, which is criterion s2. 
Other criteria can be justified in a similar manner. 

Table 6.5. Intuitive criteria relating y is B' in Premise 2 and z is C' in the 
Conclusion in generalized hypothetical syllogism. 

criterion s4 y is more or less B z is very C 
criterion s5 y is more or less B z is C I 
criterion s l  
criterion s2 
criterion s3 

y is B' (Premise 2) 
y is B 

y is very B 
y is very B 

criterion s6 
criterion s7 

z is C' (Conclusion) 
z is C 

z is more or less C 
z is C 

y is not B 
y is not B 

z is unknown 
z is not C 
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We call the criteria in Tables 6.3-6.5 intuitive criteria because they are not nec- 
essarily true for a particular choice of fuzzy sets; this is what approximate reasoning 
means. Although these criteria are not absolutely correct, they do make some sense. 
They should be viewed as guidelines (or soft constraints) in designing specific infer- 
ences. 

We have now shown the basic ideas of three fundamental principles in fuzzy logic: 
generalized modus ponens, generalized modus tollens, and generalized hypothetical 
syllogism. The next question is how to determine the membership functions of the 
fuzzy propositions in the conclusions given those in the premises. The compositional 
rule of inference was proposed to answer this question. 

6.2 The Compositional Rule of Inference 

The compositional rule of inference is a generalization of the following procedure 
(referring to Fig. 6.1): suppose we have a curve y = f (x) from x E U to  y E V and 
are given x = a,  then from x = a and y = f (x) we can infer y = b = f (a). 

Let us generalize the above procedure by assuming that a is an interval and f (x) 
is an interval-valued function as shown in Fig. 6.2. To find the interval b which is 
inferred from a and f (x), we first construct a cylindrical set aE with base a and find 
its intersection I with the interval-valued curve. Then we project I on V yielding 
the interval b. 

Figure 6.1. Inferring y = b from x = a and y = f(x). 

Going one step further in our chain of generalization, assume the A' is a fuzzy 
set in U and Q is a fuzzy relation in U x V. Again, forming a cylindrical extension 
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Figure 6.2. Inferring interval b from interval a and 
interval-valued function f (x). 

Figure 6.3. Inferring fuzzy set B' from fuzzy set A' and 
fuzzy relation Q .  

A& of A' and intersecting it with the fuzzy relation Q (see Fig. 6.3), we obtain a 
fuzzy set A& n Q which is analog of the intersection I in Fig. 6.2. Then, projecting 
A& n Q on the y-axis, we obtain the fuzzy set B'. 

More specifically, given (x) and pQ (x, y), we have 

PA', (2, Y) = PA1 (x) 
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(see (4.18)) and, consequently, 

Finally, from (4.12) we obtain B', the projection of Ab n Q on V, as 

(6.8) is called the compositional rule of inference. In the literature, the symbol "*" 
is often used for the t-norm operator, so (6.8) is also written as 

The compositional rule of inference is also called the sup-star composition. 

In Chapter 5, we learned that a fuzzy IF-THEN rule, for example, IF x is A 
THEN y is B,  is interpreted as a fuzzy relation in the Cartesian product of the 
domains of x and y. Different implication principles give different fuzzy relations; 
see (5.23)-(5.26), (5.31), and (5.32). Therefore, the Premise 2s in the generalized 
modus ponens and generalized modus tollens can be viewed as the fuzzy relation Q 
in (6.9). For generalized hypothetical syllogism, we see that it is simply the compo- 
sition of two fuzzy relations, so we can use the composition (4.28) to determine the 
conclusion. In summary, we obtain the detailed formulas for computing the con- 
clusions in generalized modus ponens, generalized modus tollens, and generalized 
hypothetical syllogism, as follows: 

a Generalized Modus  Ponens: Given fuzzy set A' (which represents the 
premise x is A') and fuzzy relation A -+ B in U x V (which represents the 
premise IF x is A THEN y is B), a fuzzy set B' in V (which represents the 
conclusion y is B') is inferred as 

a Generalized Modus  Tollens: Given fuzzy set B' (which represents the 
premise y i s  B') and fuzzy relation A -+ B in U x V (which represents the 
premise IF x is A THEN y is B),  a fuzzy set A' in U (which represents the 
conclusion x is A') is inferred as 

a Generalized Hypothetical Syllogism: Given fuzzy relation A -+ B in 
U x V (which represents the premise IF x i s  A THEN y is B) and fuzzy 
relation B' -+ C in V x W (which represents the premise IF y is B' THEN z 
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is C ) ,  a fuzzy relation A -+ C' in U x W (which represents the conclusion IF 
x is A THEN z is C') is inferred as 

Using different t-norms in (6.10)-(6.12) and different implication rules (5.23)- 
(5.26), (5.31) and (5.32), we obtain a diversity of results. These results show the 
properties of the implication rules. We now study some of these properties. 

6.3 Properties of the Implication Rules 

In this section, we apply specific implication rules and t-norms to (6.10)-(6.12) and 
see what the PBI (y), PA! (x) and p ~ , c ~  (x, z) look like for some typical cases of A' 
and B'. We consider the generalized modus ponens, generalized modus tollens, and 
generalized hypothetical syllogism in sequal. 

6.3.1 Generalized Modus Ponens 

Example 6.2. Suppose we use min for the t-norm and Mamdani's product impli- 
cation (5.32) for the ~ A + B ( x ,  y) in the generalized modus ponens (6.10). Consider 
four cases of A': (a) A' = A, (b) A' = very A, (c) A' = more or less A, and 
(d) A = A. Our task is to determine the corresponding B'. We assume that 
supXEU[pA(x)] = 1 (the fuzzy set A is normal). If A' = A, we have 

If A' = very A, we have 

Since supxEu[p~(x)]  = 1 and x can take any values in U, for any y E V there exists 
x E U such that PA(%) 2 p ~ ( y ) .  Thus (6.14) can be simplified to 

PB, (Y) = SUP[PA (X)PB (Y)] 
x E U  

= PB(Y) (6.15) 

If A' = more or less A, then from P;'~(x) 2 pA(x) 2 pA(x)pB(x), we have 

PB' (Y) = SUP {min[P;l2 (XI, PA (X)PB (Y)]) 
XEU 
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Finally, if A' = A, we obtain 

Since for fixed y E V, p ~ ( x ) p ~ ( y )  is an increasing function with pA(x) while 
1 - p ~ ( x )  is a decreasing function with PA(%), the supxEu min in (6.17) is achieved 
when 1 - ~ A ( x )  = p ~ ( x ) p ~  (y), that is, when pa(x) = &. Hence, 

From (6.13), (6.15), (6.16), (6.18), and Table 6.3 we see that the particular gener- 
alized modus ponens considered in this example satisfies critera pl ,  p3 and p5, but 
does not satisfy criteria p2, p4, p6, and p7. 

Example 6.3. In this example, we still use min for the t-norm but use Zadeh 
implication (5.25) for the ,uA-+B(x,Y) in the generalized modus ponens (6.10). 
Again, we consider the four typical cases of A' in Example 6.2 and assume that 
SUP~EU[PA(X)I = 1. 

(a) For A' = A, we have 

Since s u p X E U p ~ ( x )  = 1, the supZEumin in (6.19) is achieved at the particular 
XI) E U when 

PA ( ~ 0 )  = max[min(~A(xI)), PB (Y)), 1 - PA(XO)] (6.20) 

If p ~ ( x 0 )  < p ~ ( y ) ,  then (6.20) becomes 

which is true when p ~ ( x 0 )  > 0.5; thus from (6.19) and (6.20) we have pBt (y) = 
PA (XI)). Since supXEU[p~  (x)] = 1, it must be true that pA (XI)) = 1, but this leads to 
p ~ ( y )  > ~ A ( X O )  = 1, which is impossible. Thus, we cannot have pA(xo) < pB(y). 
Now consider the only possible case pA(xO) > pB(y). In this case, (6.20) becomes 

If p ~ ( y )  < 1 - ~ A ( x o ) ,  then p ~ ( x 0 )  = 1 - ,UA(XO), which is true when pA(xo) = 0.5. 
If p ~ ( y )  > 1 - ~ A ( x o ) ,  then from (6.22) we have ~ A ( X I ) )  = p ~ ( y )  1 0.5. Hence, 
p ~ ( x 0 )  = max[0.5, p ~ ( y ) ]  and we obtain 

(b) For A' = very A, we have 
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Similar to the A' = A case, the supxEu min is achieved at  xo E U when 

which is true only when p A ( x o )  = 1 ,  but this leads to the contradiction p B ( y )  > 1. 
Thus p ~ ( x o )  2 p ~ ( y )  is the only possible case. If pA(xO)  2 p B ( y ) ,  then (6.25) 
becomes 

~ i ( x o )  = ~ ~ x [ P B ( Y ) ,  1  - P A ( X O ) ]  (6.27) 

If p~  ( y )  < 1  - ~ A ( x o ) ,  then p i ( x o )  = 1  - pA(xo ) ,  which is true when pA(xo )  = 
q. Hence, if p~  ( y )  < 1 - pA ( x o )  = q , we have pB, ( y )  = p i  ( x O )  = v. If 

p~  ( y )  2 1 - ~ A ( x o ) ,  we have p ~ ( y )  = p i  ( x o )  = p~  ( y )  2 -. In summary, we 
obtain 

(c) If A' = more  or less A, we have 

where the supxEu min is achieved at  xo E U when 

Similar to the A' = very  A case, we can show that pA(xO)  < p B ( y )  is impossible. 
For PA ( X O )  2 PB ( Y ) ,  we have 

112 If PB ( Y )  < 1 - ~ A ( x o ) ,  then pA ( x o )  = 1 - ~ A ( x o ) ,  which is true when p A ( x o )  = 
112 q. Thus, if p ~ ( y )  < l - p ~ ( x ~ )  = +, we have pBt (y )  = pA ( x O )  = +. If 

P B ( Y )  2 1  - PA (xo ) ,  we have PBI ( y )  = pi12(xo) = p~  ( 9 )  2 q. To summarize, 
we obtain 

&-1 
P B ~ ( Y )  = ~ f n / ~ ( x o )  =  ma^[^ PB ( Y ) ]  (6.32) 

(d) Finally, when A' = A, we have 
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By inspecting (6.33) we see that if we choose xo E U such that pA(xO) = 0, then 
1 - ,UA(XO) = 1 and max[min(p~(x) ,  PB (y)), 1 - PA (x)] = 1, thus the supxEu min 
is achieved at  x = XO. Hence, in this case we have 

PBI (Y) = 1 (6.34) 

From (6.23), (6.28), (6.32), and (6.34), we see that for all the criteria in Table 6.3, 
only criterion p6 is satisfied. (This approximate reasoning is truely approximate!) 

6.3.2 Generalized Modus Tollens 

Example 6.4. Similar to Example 6.2, we use min for the t-norm and Mamdani's 
product implication (5.32) for the ~ A + B ( x ,  y)_ in the generalized modus tollens 
(6.11). Consider four cases of B': (a) B' = B ,  (b) B' = not very B ,  (c) B' = 
not more or less B,  and (d) B' = B. We assume that supYEV[pB(y)] = 1. If 
B' = B, we have from (6.11) that 

The sup,,, min is achieved at  yo E V when 1 - pB (yo) = pA(x)pB (yo), which 
hence, implies PB (YO) = 

PA' (2) = 1 - PB (YO) = PA ($1 
1 + PA ($1 

If B' = not very B, then 

where the sup,,, min is achieved at yo E V when 1 - &(yo) = pA(x)pB (yo), which 

gives pa (yo) = d':(x)+4-'*(x) 2 . Hence, 

If B' = not more or less B, we have 

Again, the sup,,, min is achieved at  yo E V when 1 - pg2(y0) = pA(x)pB(YO), 

which gives ,UB (yo) = 1+2rr (x)-\/r:(x)+l. Hence, 
2': (2) 
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Finally, when B' = B, we have 

From (6.36), (6.38), (6.40) and (6.41) we see that among the seven intuitive criteria 
in Table 6.4 only criterion t5 is satisfied. CI 

6.3.3 Generalized Hypothetical Syllogism 

Example 6.5. Similar to Examples 6.2 and 6.4, we use min for the t-norm and 
Mamdani product implication for the ~ A + B ( x ,  y) and P B / + ~ ( Y ,  Z) in the general- 
ized hypothetical syllogism (6.12). We assume supYEv[p~(y)]  = 1 and consider four 
typical cases of B': (a) B' = B,  (b) B' = very B, (c) B' = more or less B ,  and 
(d) B' = B. If B' = B,  we have from (6.12) that 

If B' = very B,  we have 

If PA(X) > PC (z), then it is always true that PA (X)PB (y) > p i  (y),uc(z), thus, 
2 

PA-~C'  ( 2 , ~ )  = supYEv P~(Y)PC(Z)  = PC(Z). If PA($) i PC(Z), then the supyEv min 
is achieved at yo E V, when PA (X)PB (YO) = ,u;(y~)pc(~), which gives pB(yo) = 

&. hence, in this case ,ua+c~(x,z) = p ~ ( x ) p ~ ( y ~ )  = s. In summary, we 
fit (2) ' 
obtain 

If B' = more or less B, then using the same method as for the B' = very B case, 
we have 

PA(%) i f  PA(X) < PC(Z) 

if PA (m) PC(Z) P A ( X )  

Finally, when B' = B, we have 
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where the supyEv min is achieved at  yo E V when pA (x)pB (yo) = (1 -pB (YO))pC (z), 

that is, when ps(yo) = Hence, 

6.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Using truth tables to prove the equivalence of propositions. 

Basic inference rules (Modus Ponens, Modus Tollens, and Hypothetical Syllo- 
gism) and their generalizations to fuzzy propositions (Generalized Modus Po- 
nens, Generalized Modus Tollens, and Generalized Hypothetical Syllogism). 

The idea and applications of the compositional rule of inference. 

Determining the resulting membership functions from different implication 
rules and typical cases of premises. 

A comprehensive treatment of many-valued logic was prepared by Rescher [1969]. 
The generalizations of classical logic principles to fuzzy logic were proposed in Zadeh 
[1973], Zadeh [I9751 and other papers of Zadeh in the 1970s. The compositional 
rule of inference also can be found in these papers of Zadeh. 

6.5 Exercises 

Exercise 6.1. Use the truth table method to prove that the following are 
tautologies: (a) modus ponens (6.3), (b) modus tollens (6.4), and (c) hypothetical 
syllogism (6.5). 

Exercise 6.2. Let U = {xl, 22 ,  23 )  and V = {yl, yz}, and assume that a fuzzy 
IF-THEN rule "IF x is A, THEN y is B" is given, where A = .5/x1 + 11x2 + .6/x3 
and B = l/yl +.4/y2. Then, given a fact "x is A'," where A' = .6/x1 +.9/x2 +.7/x3, 
use the generalized modus ponens (6.10) to derive a conclusion in the form "y is 
B'," where the fuzzy relation A + B is interpreted using: 

(a) Dienes-Rescher implication (5.23), 

(b) Lukasiewicz implication (5.24), 

(c) Zadeh implication (5.25), and 

(d) Mamdani Product implication (5.32). 
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Exercise 6.3. Repeat Exercise 6.2 with A = .6/xl + 11x2 + .9/x3, B = .6/yl + 
llyz,, and A' = .5/x1 + .9/x2 + 1/23. 

Exercise 6.4. Let U, V, A, and B be the same as in Exercise 6.2. Now given a 
fact "y is B'," where B' = .9/yl + .7/y2, use the generalized modus tollens (6.11) to 
derive a conclusion "x is A'," where the fuzzy relation A + B is interpreted using: 

(a) Lukasiewicz implication (5.24), and 

(b) Mamdani Product implication (5.32). 

Exercise 6.5. Use min for the t-norm and Lukasiewicz implication (5.24) 
for the p A + . ~ ( x ,  y) in the generalized modus ponens (6.10), and determine the 
membership function p ~ t  (y) in terms of pB(y) for: (a) A' = A, (b) A' = very A, 
(c) A' = more or less A, and (d) A' = A. 

Exercise 6.6. Use min for the t-norm and Dienes-Rescher implication (5.23) 
for the P ~ + . ~ ( x , Y )  in the generalized modus ponens (6.10), and determine the 
membership function p ~ j ( y )  in terms of p ~ ( y )  for: (a) A' = A, (b) A' = very A, 
(c) A' = more or less A, and (d) A' = A. 

Exercise 6.7. With min as the t-norm and Mamdani minimum implication 
(5.31) for the P ~ + . ~ ( x , Y )  in the generalized modus tollens (6.11), determine the 
membership function p ~ t  (x) in terms of pA(x) for: (a) B' = B, (b) B' = not very B, 
(c) B' = not more or less B, and (d) B' = B. 

Exercise 6.8. Consider a fuzzy logic based on the standard operation (min, max, 
1 - a) .  For any two arbitrary propositions, A and B, in the logic, assume that we 
require that the equality 

A A B = B V ( A A B )  (6.48) 

holds. Imposing such requirement means that pairs of truth values of A and B 
become restricted to a subset of [O, 112. Show exactly how they are restricted. 
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Part I I 

Fuzzy Systems and Their 
Properties 

We learned in Chapter 1 that a fuzzy system consists of four components: fuzzy 
rule base, fuzzy inference engine, fuzzifier and defuzzifier, as shown in Fig. 1.5. In 
this part (Chapters 7-11), we will study each of the four components in detail. We 
will see how the fuzzy mathematical and logic principles we learned in Part I are 
used in the fuzzy systems. We will derive the compact mathematical formulas for 
different types of fuzzy systems and study their approximation properties. 

In Chapter 7, we will analyze the structure of fuzzy rule base and propose a 
number of specific fuzzy inference engines. In Chapter 8, a number of fuzzifiers 
and defuzzifiers will be proposed and analyzed in detail. In Chapter 9, the fuzzy 
inference engines, fuzzifiers, and defuzzifiers proposed in Chapters 7 and 8 will 
be combined to obtain some specific fuzzy systems that will be proven to have 
the universal approximation property. In Chapters 10 and 11, the approximation 
accuracy of fuzzy systems will be studied in detail and we will show how to design 
fuzzy systems to achieve any specified accuracy. 



Chapter 7 

Fuzzy Rule Base and Fuzzy 
Inference Engine 

Consider the fuzzy system shown in Fig. 1.5, where U = UI x U2 x . . . x Un c Rn 
and V c R. We consider only the multi-input-single-output case, because a multi- 
output system can always be decomposed into a collection of single-output systems. 
For example, if we are asked to design a 4-input-boutput fuzzy system, we can first 
design three 4-input-1-output fuzzy systems separately and then put them together 
as in Fig. 7.1. 

Figure 7.1. A multi-input-multi-output fuzzy system 
can be decomposed into a collection of multi-input-single- 
output fuzzy systems. 

In this chapter, we will study the details inside the fuzzy rule base and fuzzy 
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inference engine; fuzzifiers and defuzzifiers will be studied in the next chapter. 

7.1 Fuzzy Rule Base 

7.1.1 Structure of Fuzzy Rule Base 

A fuzzy rule base consists of a set of fuzzy IF-THEN rules. It is the heart of the fuzzy 
system in the sense that all other components are used to implement these rules in 
a reasonable and efficient manner. Specifically, the fuzzy rule base comprises the 
following fuzzy IF-THEN rules: 

RU(" : IF xl is A: and ... and x, is Ak, T H E N  y i s  B" (7.1) 

where Af and B' are fuzzy sets in Ui c R and V c R, respectively, and x = 
(xl,xz, ..., x,)* E U and y E V are the input and output (linguistic) variables of 
the fuzzy system, respectively. Let M be the number of rules in the fuzzy rule base; 
that is, 1 = 1,2, ..., M in (7.1). We call the rules in the form of (7.1) canonical fuzzy 
IF-THEN rules because they include many other types of fuzzy rules and fuzzy 
propositions as special cases, as shown in the following lemma. 

Lemma 7.1. The canonical fuzzy IF-THEN rules in the form of (7.1) include 
the following as special cases: 

(a) LLPartial rules" : 

IF XI is A k n d  ... and  x, is A;, T H E N  y is B" (7.2) 

where m < n. 

(b) "Or rules" : 

IF xl is A: and  ... and x, is AL or x,+l is AL+, and ... and x, is A;, 

T H E N  y is B' (7.3) 

(c) Single fuzzy statement: 
y is B' 

(d) "Gradual rules," for example: 

The smaller the x, the bigger the y (7.5) 

(e) Non-fuzzy rules (that is, conventional production rules). 

Proof: The partial rule (7.2) is equivalent to 

IFx l  is A: and  ... and  x, i s  AL and x,+l is I and  ... and  x, is I ,  
T H E N  y is B' (7-6) 
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where I is a fuzzy set in R with pI(x) = 1 for all x E R. The preceding rule is in 
the form of (7.1); this proves (a). Based on intuitive meaning of the logic operator 
"or," the "Or rule" (7.3) is equivalent to the following two rules: 

I F z l  i s  A; and ... and x, i s  AL, THEN y i s  B1 (7.7) 
IFX,+~ i s  A&+, and ... and s, i s  A:, T H E N  y i s  B' (7.8) 

From (a) we have that the two rules (7.7) and (7.8) are special cases of (7.1); this 
proves (b). The fuzzy statement (7.4) is equivalent to 

IF XI i s  I and ... and x, i s  I, T H E N  y i s  B1 (7.9) 

which is in the form of (7.1); this proves (c). For (d), let S be a fuzzy set repre- 
senting "smaller," for example, ps(x) = 1/(1 + exp(5(x + 2))), and B be a fuzzy 
set representing "bigger," for example, pB(y) = 1/(1 + exp(-5(y - 2))), then the 
"Gradual rule" (7.5) is equivalent to 

IF x i s  S, T H E N  y i s  B (7.10) 

which is a special case of (7.1); this proves (d). Finally, if the membership functions 
of Af and B' can only take values 1 or 0, then the rules (7.1) become non-fuzzy 
rules. , 

In our fuzzy system framework, human knowledge has to be represented in 
the form of the fuzzy IF-THEN rules (7.1). That is, we can only utilize human 
knowledge that can be formulated in terms of the fuzzy IF-THEN rules. Fortunately, 
Lemma 7.1 ensures that these rules provide a quite general knowledge representation 
scheme. 

7.1.2 Properties of Set of Rules 

Because the fuzzy rule base consists of a set of rules, the relationship among these 
rules and the rules as a whole impose interesting questions. For example, do the 
rules cover all the possible situations that the fuzzy system may face? Are there 
any conflicts among these rules? To answer these sorts of questions, we introduce 
the following concepts. 

Definition 7.1. A set of fuzzy IF-THEN rules is complete if for any x E U ,  
there exists at least one rule in the fuzzy rule base, say rule R U ( ~ )  (in the form of 
(7.1)), such that 

PA: (xi) # 0 (7.11) 

for all i = 1,2 ,  ..., n. 

Intuitively, the completeness of a set of rules means that at any point in the 
input space there is at least one rule that "fires"; that is, the membership value of 
the IF part of the rule at this point is non-zero. 
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Example 7.1. Consider a Zinput-1-output fuzzy system with U = Ul x Uz = 
[O, 11 x [O,1]  and V = [O, 11. Define three fuzzy sets S1, MI and L1 in Ul, and two 
fuzzy sets S2 and L2 in Uz, as shown in Fig. 7.2. In order for a fuzzy rule base to 
be complete, it must contain the following six rules whose IF parts constitute all 
the possible combinations of S1, MI, L1 with Sz, La: 

I F  XI i s  S1 and 2 2  i s  S2, T H E N  y i s  B1 

I F  XI i s  S1 and x2 i s  La, T H E N  y i s  B2 

I F  x1 i s  MI and 2 2  i s  S2, T H E N  y i s  B3 (7.12) 

IF  xl i s  MI and 2 2  i s  La, THEN y i s  B4 

IF  $1 i s  L1 and x2 i s  Sz, T H E N  y i s  B~ 

IF  xl i s  L1 and x2 i s  L2, T H E N  y i s  B~ 

where B' (1 = 1,2, ..., 6) are fuzzy sets in V. If any rule in this group is missing, then 
we can find point x* E U, at which the IF part propositions of all the remaining 
rules have zero membership value. For example, if the second rule in (7.12) is 
missing, then this x* = (0, l)  (Why?). 

Figure 7.2. An example of membership functions for a 
two-input fuzzy system. 

From Example 7.1 we see that if we use the triangular membership functions as in 
Fig. 7.2, the number of rules in a complete fuzzy rule base increases exponentially 
with the dimension of the input space U. This problem is called the curse of 
dimensionality and will be further discussed in Chapter 22. 
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Definition 7.2. A set of fuzzy IF-THEN rules is consistent if there are no rules 
with the same IF parts but different THEN parts. 

For nonfuzzy production rules, consistence is an important requirement because 
it is difficult to continue the search if there are conflicting rules. For fuzzy rules, how- 
ever, consistence is not critical because we will see later that if there are conflicting 
rules, the fuzzy inference engine and the defuzzifier will automatically average them 
out to produce a compromised result. Of course, it is better to have a consistent 
fuzzy rule base in the first place. 

Definition 7.3. A set of fuzzy IF-THEN rules is continuous if there do not 
exist such neighboring rules whose THEN part fuzzy sets have empty intersection. 

Intuitively, continuity means that the input-output behavior of the fuzzy system 
should be smooth. It is difficult to explain this concept in more detail at this point, 
because we have not yet derived the complete formulas of the fuzzy systems, but it 
will become clear as we move into Chapter 9. 

7.2 Fuzzy lnference Engine 

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF- 
THEN rules in the fuzzy rule base into a mapping from a fuzzy set A' in U to a fuzzy 
set B' in V. In Chapter 6 we learned that a fuzzy IF-THEN rule is interpreted as a 
fuzzy relation in the input-output product space U x V, and we proposed a number 
of implications that specify the fuzzy relation. If the fuzzy rule base consists of 
only a single rule, then the generalized modus ponens (6.10) specifies the mapping 
from fuzzy set A' in U to fuzzy set B' in V. Because any practical fuzzy rule base 
constitutes more than one rule, the key question here is how to infer with a set of 
rules. There are two ways to infer with a set of rules: composition based inference 
and individual-rule based inference, which we will discuss next. 

7.2.1 Composition Based lnference 

In composition based inference, all rules in the fuzzy rule base are combined into a 
single fuzzy relation in U x V, which is then viewed as a single fuzzy IF-THEN rule. 
So the key question is how to perform this combination. We should first understand 
what a set of rules mean intuitively, and then we can use appropriate logic operators 
to combine them. 

There are two opposite arguments for what a set of rules should mean. The 
first one views the rules as independent conditional statements. If we accept this 
point of view, then a reasonable operator for combining the rules is union. The 
second one views the rules as strongly coupled conditional statements such that the 
conditions of all the rules must be satisfied in order for the whole set of rules to 
have an impact. If we adapt this view, then we should use the operator intersection 
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to combine the rules. The second view may look strange, but for some implications, 
for example, the Godel implication (5.26), it makes sense, as we will see very soon 
in this section. We now show the details of these two schemes. 

Let RU(') be a fuzzy relation in U x V, which represents the fuzzy IF-THEN 
rule (7.1); that is, RU(') = A: x . .. x A: -+ B'. From Chapter 5 we know that 
A; x . . - x A: is a fczzy relation in U = Ul x . . - x Un defined by 

where * represents any t-norm operator. The implication -+ in RU(') is defined 
according to various implications (5.23)-(5.26), (5.31), and (5.32). If we accept the 
first view of a set of rules, then the M rules in the form of (7.1) are interpreted as 
a single fuzzy relation QM in U x V defined by 

This combination is called the Mamdani combination. If we use the symbol + to  
represent the s-norm, then (7.14) can be rewritten as 

PQ? (x, Y) = P R U ~ ~ )  (x, ?I)+ . . . / P R U ( M )  (x, 31) (7.15) 

For the second view of a set of rules, the M fuzzy IF-THEN rules of (7.1) are 
interpreted as a fuzzy relation QG in U x V, which is defined as 

or equivalently, 

where * denotes t-norm. This combination is called the Godel combination. 

Let A' be an arbitrary fuzzy set in U and be the input to the fuzzy inference 
engine. Then, by viewing QM or QG as a single fuzzy IF-THEN rule and using 
the generalized modus ponens (6.10), we obtain the output of the fuzzy inference 
engine as 

PB' (Y) = SUP ~ [ P A J  (XI, PQM (x, Y)] (7.18) 
XEU 

if we use the Mamdani combination, or as 

PB' (9) = SUP ~ [ P A '  (XI, PQG (x, Y)] (7.19) 
XEU 

if we use the Godel combination. 

In summary, the computational procedure of the composition based inference is 
given as follows: 
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Step 1: For the M fuzzy IF-THEN rules in the form of (7.1), determine the 
membership functions PA: x..,xA; ($1, ..., Xn) for 1 = 1,2, ..., M according to 
(7.13). 

Step 2: View All x . . x A; as the FPI and B' as the FP2 in the impli- 
cations (5.23)-(5.26), (5.31) and (5.32), and detbrmine pBu(l) (xl, ..., x,, y) = 
p ~ ; ~ . , . ~ ~ ~ . + ~ i ( x ~ ,  ..., xn, y) for 1 = 1,2, ..., M according to any one of these 
implications. 

Step 3: Determine 1 - 1 ~ ~  (x, y) or , u ~ ~  (x, y) according to (7.15) or (7.17). 

Step 4: For given input A', the fuzzy inference engine gives output B' ac- 
cording to (7.18) or (7.19). 

7.2.2 Individual-Rule Based lnference 

In individual-rule based inference, each rule in the fuzzy rule base determines an 
output fuzzy set and the output of the whole fuzzy inference engine is the combina- 
tion of the M individual fuzzy sets. The combination can be taken either by union 
or by intersection. 

The computational procedure of the individual-rule based inference is summa- 
rized as follows: 

Steps 1 and 2: Same as the Steps 1 and 2 for the composition based inference. 

Step 3: For given input fuzzy set A' in U ,  compute the output fuzzy set B,' 
in V for each individual rule RU(') according to the generalized modus ponens 
(6.10), that is, 

PB;(Y) = SUP ~[PA'(X), PRU(" (x, Y)] (7.20) 
XEU 

for 1 = 1,2, ..., M 

Step 4: The output of the fuzzy inference engine is the combination of the 
M fuzzy sets {B:, ..., B b )  either by union, that is, 

or by intersection, that is, 

where + and * denote s-norm and t-norm operators, respectively. 
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7.2.3 The Details of Some lnference Engines 

From the previous two subsections we see that there are a variety of choices in 
the fuzzy inference engine. Specifically, we have the following alternatives: (i) 
composition based inference or individual-rule based inference, and within the com- 
position based inference, Mamdani inference or Godel inference, (ii) Dienes-Rescher 
implication (5.23), Lukasiewicz implication (5.24), Zadeh implication (5.25), Godel 
implication (5.26), or Mamdani implications (5.31)-(5.32), and (iii) different oper- 
ations for the t-norms and s-norms in the various formulas. So a natural question 
is: how do we select from these alternatives? 

In general, the following three criteria should be considered: 

Intuitive appeal: The choice should make sense from an intuitive point of view. 
For example, if a set of rules are given by a human expert who believes that 
these rules are independent of each other, then they should be combined by 
union. 

a Computational eficiency: The choice should result in a formula relating B' 
with A', which is simple to compute. 

Special properties: Some choice may result in an inference engine that has 
special properties. If these properties are desirable, then we should make this 
choice. 

We now show the detailed formulas of a number of fuzzy inference engines that 
are commonly used in fuzzy systems and fuzzy control. 

e Produc t  Inference Engine: In product inference engine, we use: (i) individual- 
rule based inference with union combination (7.21), (ii) Mamdani's product 
implication (5.32), and (iii) algebraic product for all the t-norm operators and 
max for all the s-norm operators. Specifically, from (7.20), (7.21), (5.32), and 
(7.13), we obtain the product inference engine as 

That is, given fuzzy set A' in U ,  the product inference engine gives the fuzzy 
set B' in V according to (7.23). 

Min imum Inference Engine: In minimum inference engine, we use: (i) 
individual-rule based inference with union combination (7.21), (ii) Mamdani's 
minimum implication (5.31), and (iii) min for all the t-norm operators and 
max for all the s-norm operators. Specifically, from (7.20), (7.21), (5.31), and 
(7.13) we have 

M 
PB' (9) = ~ ? C [ S U P  min(PA' PA; (XI), ..., PAL ( ~ n ) ,  PB' (Y))] (7.24) 

XEU 
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That is, given fuzzy set A' in U, the minimum inference engine gives the fuzzy 
set B' in V according to (7.24). 

The product inference engine and the minimum inference engine are the most 
commonly used fuzzy inference engines in fuzzy systems and fuzzy control. The 
main advantage of them is their computational simplicity; this is especially true for 
the product inference engine (7.23). Also, they are intuitively appealing for many 
practical problems, especially for fuzzy control. We now show some properties of 
the product and minimum inference engines. 

Lemma 7.2. The product inference engine is unchanged if we replace "individual- 
rule based inference with union combination (7.21)" by "composition based infer- 
ence with Mamdani combination (7.15)." 

Proof: From (7.15) and (7.18) we have 

Using (5.32) and (7.13), we can rewrite (7.25) as 

Because the maxE, and supxGu are interchangeable, (7.26) is equivalent to (7.23). 

Lemma 7.3. If the fuzzy set A' is a fuzzy singleton, that is, if 

where x* is some point in U, then the product inference engine is simplified to 

and the minimum inference engine is simplified to 

Proof: Substituting (7.27) into (7.23) and (7.24), we see that the SUPXE~ is 
achieved at  x = x*. Hence, (7.23) reduces (7.28) and (7.24) reduces (7.29). 

Lemma 7.2 shows that although the individual-rule based and composition based 
inferences are conceptually different, they produce the same fuzzy inference engine 
in certain important cases. Lemma 7.3 indicates that the computation within the 



Sec. 7.2. Fuzzy Inference Engine 99 

fuzzy inference engine can be greatly simplified if the input is a fuzzy singleton (the 
most difficult computation in (7.23) and (7.24) is the supxEu, which disappears in 
(7.28) and (7.29)). 

A disadvantage of the product and minimum inference engines is that if at some 
x E U the pA; (xi)'s are very small, then the ~ B I  (y) obtained from (7.23) or (7.24) 
will be very small. This may cause problems in implementation. The following 
three fuzzy inference engines overcome this disadvantage. 

Lukasiewicz Inference Engine: In Lukasiewicz inference engine, we use: 
(i) individual-rule based inference with intersection combination (7.22), (ii) 
Lukasiewicz implication (5.24), and (iii) min for all the t-norm operators. 
Specifically, from (7.22), (7.20), (5.24) and (7.13) we obtain 

M n 
= mln{ SUP min [p~ l (x ) ,  1 - m i n ( p ~ ;  (xi)) + P B ~  (Y)]} 

t= 1 
(7.30) 

1=1 XEU 

That is, for given fuzzy set A' in U, the Lukasiewicz inference engine gives 
the fuzzy set B' in V according to (7.30). 

Zadeh Inference Engine: In Zadeh inference engine, we use: (i) individual- 
rule based inference with intersection combination (7.22), (ii) Zadeh implica- 
tion (5.25), and (iii) min for all the t-norm operators. Specifically, from (7.22), 
(7.20), (5.25), and (7.13) we obtain 

M 
PB' (3) = mln{ sup m i n [ p ~ l  (x), max(min(pA; (XI), ..., (x,), pgl (y)), 

1=1 XEU 

1 -  PA: %=I (xi)))]} (7.31) 

Dienes-Rescher Inference Engine: In Dienes-Rescher inference engine, 
we use the same operations as in the Zadeh inference engine, except that 
we replace the Zadeh implication (5.25) with the Dienes-Rescher implication 
(5.23). Specifically, we obtain from (7.22), (7.20), (5.23), and (7.13) that 

M 
PB. (9) = mini sup min[lrat (x), max(1 - $ n ( p ~ i  (xi)), p ~ i  (y))]} (7.32) 

1=1 XEU 2=1 * 

Similar to Lemma 7.3, we have the following results for the Lukasiewicz, Zadeh 
and Dienes-Rescher inference engines. 
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Lemma 7.4: If A' is a fuzzy singleton as defined by (7.27), then the Lukasiewicz, 
Zadeh and Dienes-Rescher inference engines are simplified to 

respectively. 

Proof: Using the same arguments as in the proof of Lemma 7.3, we can prove 
this lemma. 

We now have proposed five fuzzy inference engines. Next, we compare them 
through two examples. 

Example 7.2: Suppose that a fuzzy rule base consists of only one rule 

IF x1 i s  A1 and . . . and xn is A,, THEN y i s  B (7.36) 

where 

PB(Y) = { 1-Iy l i f  - 1 I y L 1  
0 otherwise 

Assume that A' is a fuzzy singleton defined by (7.27). We would like to plot 
the PBI(Y) obtained from the five fuzzy inference engines. Let B;, B L ,  BL, Bh 
and B& be the fuzzy set B' using the product, minimum, Lukasiewicz, Zadeh and 
Dienes-Rescher inference engines, respectively, and let m i n [ p ~ ,  (x;), ..., PA, (xk)] = 
pAp (xJ) and n:=l PA, (xf ) = pA (x*) . Then from (7.28), (7.29), and (7.33)-(7.35) 
we have 

For the case of PA, (x;) > 0.5, p~ : ,  (y) and p ~ h  (y) are plotted in Fig. 7.3, and 
p ~ ;  (y), p ~ : ,  (y) and PB:, (y) are plottc"3 in Fig. 7.4. For the case of p~~ (x;) < 0.5, 
PB:, (y) and p ~ g  (y) are plotted in Fig. 7.5, and ~ B ( L  (y), PB:, (y) and ,UB& (y) are 
plotted in Fig. 7.6. 

From Figs.7.3-7.6 we have the following observations: (i) if the membership 
value of the IF part at  point x* is small (say, /AA,(xJ) < 0.5), then the product 
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and minimum inference engines give very small membership values, whereas the 
Lukasiewicz, Zadeh and Dienes-Rescher inference engines give very large member- 
ship values; (ii) the product and ,minimum inference engines are similar, while the 
Lukasiewicz, Zadeh and Dienes-Rescher inference engines are similar, but there are 
big differences between these two groups; and (iii) the Lukasiewicz inference engine 
gives the largest output membership function, while the product inference engine 
gives the smallest output membership function in all the cases; the other three 
inference engines are in between. 

Figure 7.3. Output membership functions using the 
Lukasiewicz, Zadeh and Dienes-Rescher inference engines 
for the par; (xi) 2 0.5 case. 

Example  7.3: In this example, we consider that the fuzzy system contains two 
rules: one is the same as (7.36), and the other is 

IF XI i s  Cl and . . . and x, i s  C,, T H E N  y i s  D (7.43) 

where 

1 - ( y - 1 I i f  O L y < 2  
0 otherwise 

Assume again that A' is the fuzzy singleton defined by (7.27). We would like to 
plot the ~ B I  (y) using the product inference engine, that is, ,UB; (y). Fig. 7.7 shows 

the PB; (Y), where P A  (x*) = n:=l PA;  (2;) and pc(x*) = ny=l pcZ (x;). 
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Figure 7.4. Output membership functions using the prod- 
uct and minimum inference engines for the PA; (x;) > 0.5 
case. 

Figure 7.5. Output membership functions using the prod- 
uct and minimum inference engines for the PA; (x;) < 0.5 
case. 
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Figure 7.6. Output membership functions using the 
Lukasiewicz, Zadeh and Dienes-Rescher inference engines 
for the PA; (z;) < 0.5 case. 

Figure 7.7. Output membership function using the prod- 
uct inference engine for the case of two rules. 
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7.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The structure of the canonical fuzzy IF-THEN rules and the criteria for eval- 
uating a set of rules. 

The computational procedures for the composition based and individual-rule 
based inferences. 

The detailed formulas of the five specific fuzzy inference engines: product, 
minimum, Lukasiewicz, Zadeh and Dienes-Rescher inference engines, and their 
computations for particular examples. 

Lee [I9901 provided a very good survey on fuzzy rule bases and fuzzy inference 
engines. This paper gives intuitive analyses for various issues associated with fuzzy 
rule bases and fuzzy inference engines. A mathematical analysis of fuzzy infer- 
ence engines, similar to the approach in this chapter, were prepared by Driankov, 
Hellendoorn and Reinfrank [1993]. 

7.4 Exercises 

Exercise 7.1. If the third and sixth rules in (7.12) (Example 7.1) are missing, 
at  what points do the IF part propositions of all the remaining rules have zero 
membership values? 

Exercise 7.2. Give an example of fuzzy sets B1, ..., B6 such that the set of the 
six rules (7.12) is continuous. 

Exercise 7.3. Suppose that a fuzzy rule base consists of only one rule (7.36) 
with 

PB(Y) = exp(-y2) (7.45) 

Let the input A' to the fuzzy inference engine be the fuzzy singleton (7.27). Plot 
the output membership functions , u ~ , ( y )  using: (a) product, (b) minimum, (c) 
Lukasiewicz, (d) Zadeh, and (e) Dienes-Rescher inference engines. 

Exercise 7.4. Consider Example 7.3 and plot the p ~ ,  (y) using: (a) Lukasiewicz 
inference engine, and (b) Zadeh inference engine. 

Exercise 7.5. Use the Godel implication to propose a so-called Godel inference 
engine. 



Chapter 8 

Fuzzifiers and Defuzzifiers 

We learned from Chapter 7 that the fuzzy inference engine combines the rules in 
the fuzzy rule base into a mapping from fuzzy set A' in U to fuzzy set B' in V. 
Because in most applications the input and output of the fuzzy system are real- 
valued numbers, we must construct interfaces between the fuzzy inference engine 
and the environment. The interfaces are the fuzzifier and defuzzifier in Fig. 1.5. 

8.1 Fuzzifiers 

The fuzzifier is defined as a mapping from a real-valued point x* E U C Rn to 
a fuzzy set A' in U. What are the criteria in designing the fuzzifier? First, the 
fuzzifier should consider the fact that the input is at  the crisp point x*, that is, the 
fuzzy set A' should have large membership value at x*. Second, if the input to the 
fuzzy system is corrupted by noise, then it is desireable that the fuzzifier should help 
to suppress the noise. Third, the fuzzifier should help to simplify the computations 
involved in the fuzzy inference engine. From (7.23), (7.24) and (7.30)-(7.32) we see 
that the most complicated computation in the fuzzy inference engine is the supxEu, 
therefore our objective is to simplify the computations involving supxEu. 

We now propose three fuzzifiers: 

Singleton fuzzifier: The singleton fuzzijier maps a real-valued point x* E U 
into a fuzzy singleton A' in U, which has membership value 1 at x* and 0 at 
all other points in U ;  that is, 

1 i f  x = x *  
= 0 otherwise 

Gaussian fuzzifier: The Gaussian fuzzijier maps x* E U into fuzzy set A' 
in U ,  which has the following Gaussian membership function: 
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where ai are positive parameters and the t-norm * is usually-skosenas alge- 
braic product or min. 

Triangular fuzzifier: The triangular fuzzifier maps x* E U into fuzzy set A' 
in U ,  which has the following triangular membership function 

(1 - I m - ~ T l ) * . . . ~ ( l  lxn-x:l ) if \xi -xzl 5 bi, i = 1,2 ,..., n 
PA! (4 = { o otlzer1.i.e 

6, 

(8.3) 
where bi are positive parameters and the t-norm * is usually chosen as alge- 
braic product or min. 

From (8.1)-(8.3) we see that all three fuzzifiers satisfy pA,(x*) = 1; that is, 
they satisfy the first criterion mentioned before. From Lemmas 7.3 and 7.4 we 
see that the singleton fuzzifier greatly simplifies the computations involved in the 
fuzzy inference engine. Next, we show that if the fuzzy sets A: in the rules (7.1) 
have Gaussian or triangular membership functions, then the Gaussian or triangular 
fuzzifier also will simplify some fuzzy inference engines. 

Lemma 8.1. Suppose that the fuzzy rule base consists of M rules in the form 
of (7.1) and that 

where 5: and a% are constant parameters, i = 1,2, ..., n and 1 = 1,2, ..., M. If we 
use the Gaussian fuzzifier (8.2), then: 

(a) If we choose algebraic product for the t-norm * in (8.2), the product inference 
engine (7.23) is simplified to 

where 

(b) If we choose min for the t-norm * in (8.2), the minimum inference engine 
(7.24) is simplified to 

m 1  M - ~ ! ,  

pB, (y) = m%[min(e 1 , ..., e-(  " - 5 ,  ) 2 ,  P B I  (Y))I (8.7) 
1=1 

where 
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Proof: (a) Substituting (8.2) and (8.4) into (7.23) and noticing that the * is an 
algebraic product, we obtain 

M 
n =. -ST  

2 ) 2  -( ), 
pB. (y) = max[sup n em( ai e 7 pBl (y)] 1=1 XEU i,l 

n . i - ~ ?  )2 _ ( S i - E f  )2  
M -(* 

= m a x [ n  sup e 
1=1 i=lXEU 

": C L B ~  (Y)] 

Since 

where kl and k2 are not functions of xi, the supxEu in (8.9) is achieved at xip E U 
(i = 1,2, ..., n), which is exactly (8.6). 

(b) Substituting (8.2) and (8.4) into (7.24) and noticing that the * is min, we 
obtain 

M .I-.* -(+)2 
p ~ ~ ( y )  = max{min[sup rnin(e-(+)', e I ), - .  . , 

1=1 X E U  

Sn-a; -(%+)2 

sup rnin(e-(?)', e ), P B ~  (Y)]} 
XEU 

Clearly, the supxEu min is achieved at xi = xiM when 

which gives (8.8). Substituting xi = xiM into (8.11) gives (8.7). 

We can obtain similar results as in Lemma 8.1 when the triangular fuzzifier is 
used. If ai = 0, then from (8.6) and (8.8) we have xfp = xfM = xf;  that is, in 
this case the Gaussian fuzzifier becomes the singleton fuzzifier. If ai is much larger 
than uj, then from (8.6) and (8.8) we see that xip and xfM will be very close to 5:; 
that is, xfp and xfM will be insensitive to the changes in the input x;. Therefore, 
by choosing large ai, the Gaussian fuzzifier can suppress the noise in the input xf. 
More specifically, suppose that the input xf is corrupted by noise, that is, 

where xzo is the useful signal and nf is noise. Substituting (8.13) into (8.6), we have 
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From (8.14) we see that after passing through the Gaussian fuzzifier, the noise is 

suppressed by the factor a:(:l$), . When ai is much larger than ol, the noise will 
be greatly suppressed. Similarly, we can show that the triangular fuzzifier also has 
this kind of noise suppressing capability. 

In summary, we have the following remarks about the three fuzzifiers: 

The singleton fuzzifier greatly simplifies the computation involved in the fuzzy 
inference engine for any type of membership functions the fuzzy IF-THEN 
rules may take. 

The Gaussian or triangular fuzzifiers also simplify the computation in the 
fuzzy inference engine, if the membership functions in the fuzzy IF-THEN 
rules are Gaussian or triangular, respectively. 

The Gaussian and triangular fuzzifiers can suppress noise in the input, but 
the singleton fuzzifier cannot. 

8.2 Defuzzifiers 

The defuzzifier is defined as a mapping from fuzzy set B' in V c R (which is the 
output of the fuzzy inference engine) to crisp point y* E V. Conceptually, the 
task of the defuzzifier is to specify a point in V that best represents the fuzzy 
set B'. This is similar to the mean value of a random variable. However, since 
the B' is constructed in some special ways (see Chapter 7), we have a number of 
choices in determining this representing point. The following three criteria should 
be considered in choosing a defuzzification scheme: 

Plausibility: The point y* should represent B' from an intuitive point of view; 
for example, it may lie approximately in the middle of the support of B' or 
has a high degree of membership in B'. 

Computational simplicity: This criterion is particularly important for fuzzy 
control because fuzzy controllers operate in real-time. 

Continuity: A small change in B' should not result in a large change in y*. 

We now propose three types of defuzzifiers. For all the defuzzifiers, we assume 
that the fuzzy set B' is obtained from one of the five fuzzy inference engines in 
Chapter 7, that is, B' is given by (7.23), (7.24), (7.30), (7.31), or (7.32). From 
these equations we see that B' is the union or intersection of M individual fuzzy 
sets. 
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8.2.1 center of gravity Defuzzifier 

The center of gravity defuzzifier specifies the y" as the center of the area covered 
by the membership function of B', that is, 

where Jv is the conventional integral. Fig. 8.1 shows this operation graphically. 

Figure 8.1. A graphical representation of the center of 
gravity defuzzifier. 

If we view p ~ ~ ( y )  as the probability density function of a random variable, 
then the center of gravity defuzzifier gives the mean value of the random variable. 
Sometimes it is desirable to eliminate the y E V, whose membership values in B' 
are too small; this results in the indexed center of gravity defuzzifier, which gives 

where V, is defined as 
v m  = {Y E V~PB'(Y) 2 Q) 

and a is a constant.\ 

The advantage of the center of gravity defuzzifier lies in its intuitive plausibility. 
The disadvantage is that it is computationaily intensive. In fact, the membership 
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function ,uB,(y) is usually irregular and therefore the integrations in (8.15) and 
(8.16) are difficult to compute. The next defuzzifier tries to overcome this disad- 
vantage by approximating (8.15) with a simpler formula. 

8.2.2 Center Average Defuzzifier 

Because the fuzzy set B' is the union or intersection of M fuzzy sets, a good approx- 
imation of (8.15) is the weighted average of the centers of the M fuzzy sets, with 
the weights equal the heights of the corresponding fuzzy sets. Specifically, let gjl be 
the center of the l'th fuzzy set and wl be its height, the center average defuzzifier 
determines y* as 

Fig. 8.2 illustrates this operation graphically for a simple example with M = 2. 

Figure 8.2. A graphical representation of the center av- 
erage defuzzifier. 

The center average defuzzifier is the most commonly used defuzzifier in fuzzy 
systems and fuzzy control. It is computationally simple and intuitively plausible. 
Also, small changes in g b d  wl result in small changes in y*. We now compare 
the center of gravity and center average defuzzifiers for a simple example. 

Example 8.1. Suppose that the fuzzy set B' is the union of the two fuzzy sets 
shown in Fig. 8.2 with jjl = 0 and G~ = 1. Then the center average defuzzifier gives 
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Table 8.1. Comparison of the center of gravity and center average defuzzifiers 
for Example 8.1. 

We now compute the y* resulting from the center of gravity defuzzifier. First, we 
notice that the two fuzzy sets intersect at  y = hence, 

JV pat (y)dy = area of the first  fuzzy  set + area of the second f u z z y  set 

wl 

0.9 
0.9 
0.9 
0.6 
0.6 
0.6 
0.3 
0.3 
0.3 

- their intersection 

y* (center average) 
0.4375 
0.5385 
0.7000 
0.3571 
0.4545 
0.6250 
0.1818 
0.2500 
0.4000 

From Fig. 8.2 we have 

w2 

0.7 
0.5 
0.2 
0.7 
0.5 
0.2 
0.7 
0.5 
0.2 

relative error 
0.0275 
0.0133 
0.0428 
0.0743 
0.0192 
0.0342 
0.2308 
0.1600 
0.0476 

Dividing (8.21) by (8.20) we obtain the y* of the center of gravity defuzzifier. Table 
8.1 shows the values of y* using these two defuzzifiers for certain values of w1 and 
w2. We see that the computation of the center of gravity defuzzifier is much more 
intensive than that of the center average defuzzifier. 

y* (center of gravity) 
0.4258 
0.5457 
0.7313 
0.3324 
0.4460 
0.6471 
0.1477 
0.2155 
0.3818 
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8.2.3 Maximum Defuzzifier 

Conceptually, the maximum defuzzifier chooses the y* as the point in V at which 
~ B I  (y) achieves its maximum value. Define the set 

that is, hgt(Bi) is the set of all points in V at  which ~ B I  (y) achieves its maximum 
value. The maximum defuzzifier defines y* as an arbitrary element in hgt(B1), that 
is, 

y* = any point in  hgt(B1) (8.23) 

If hgt(B1) contains a single point, then y* is uniquely defined. If hgt(B1) contains 
more than one point, then we may still use (8.23) or use the smallest of maxima, 
largest of maxima, or mean of maxima defuzzifiers. Specifically, the smallest of 
maxima defuzzifier gives 

Y* = in  f {y E hgt(B1)) (8.24) 

the largest of maxima defizzifier gives 

and the mean of maxima defuzzifier is defined as 

where Jhgt(Bl)i~ the usual integration for the continuous part of hgt(B1) and is 
summation for the discrete part of hgt(B1). We feel that the mean of maxima 
defuzzifier may give results which are contradictory to the intuition of maximum 
membership. For example, the y* from the mean of maxima defuzzifier may have 
very small membership value in B'; see Fig. 8.3 for an example. This problem is 
due to the nonconvex nature of the membership function p ~ l  (y). 

The maximum defuzzifiers are intuitively plausible and computationally simple. 
But small changes in B' may result in large changes in y*; see Fig.8.4 for an example. 
If the situation in Fig.8.4 is unlikely to happen, then the maximum defuzzifiers are 
good choices. 

8.2.4 Comparison of the Defuzzifiers 

Table 8.2 compares the three types of defuzzifiers according to the three criteria: 
plausibility, computational simplicity, and continuity. From Table 8.2 we see that 
the center average defuzzifier is the best. 

Finally, we consider an example for the computation of the defuzzifiers with 
some particular membership functions. 
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mean of maxima 
smallest of maxima 

Figure 8.3. A graphical representation of the maximum 
defuzzifiers. In this example, the mean of maxima defuzzi- 
fier gives a result that is contradictory to the maximum- 
membership intuition. 

Table 8.2. Comparison of the center of gravity, center average, and max- 
imum defuzzifiers with respect to plausibility, computational simplicity, and 
continuity. 

I continuitv I ves I ves I no 1 

plausibility 
computational simplicity 

Example 8.2. Consider a two-input-one-output fuzzy sys tem that is con- 
structed from the following two rules: 

IF XI i s  A1 and x2 is A2, THEN y i s  Al (8.27) 
IF xl i s  A2 and x2 i s  Al, THEN y i s  A2 (8.28) 

where  A1 a n d  A2 are fuzzy sets in R w i t h  membership funct ions 

center of gravity 

Yes 
no 

1-1u1if  - l < u < l  
0 otherwise 

1-Iu-it if 0 5 ~ 5 2  
PAz ( u )  = 0 otherwise 

center average 

Yes 
Yes 

maximum 

Yes 
Yes 
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Figure 8.4. An example of maximum defuzzifier where 
small change in B' results in large change in y*. 

Suppose that the input to the fuzzy system is (x;, x4) = (0.3,O.s) and we use the 
singleton fuzzifier. Determine the output of the fuzzy system y* in the follow- 
ing situations: (a) product inference engine (7.23) and center average defuzzifier 
(8.18); (b) product inference engine (7.23) and center of gravity defuzzifier (8.15); 
(c) Lakasiewicz inference engine (7.30) and mean of maxima defuzzifier (8.26); and 
(d) Lakasiewicz inference engine (7.30) and center average defuzzifier (8.18). 

(a) Since we use singleton fuzzifier, from Lemma 7.3 ((7.28)) and (8.29)-(8.30) 
we have 

which is shown in Fig. 8.2 with jjl = 0, j j 2  = 1, wl = 0.42, and wa = 0.12. Hence, 
from (8.19) we obtain that the center average defuzzifier gives 
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(b) Following (a) and (8.20)-(8.21), we have 

Hence, the y* in this case is 

(c) If we use the Lukasiewicz inference engine, then from Lemma 7.4 ((7.33)) we 
have 

PB[(Y) = min i l ,  1 - m i n [ p ~ ,  (0.3), PA,(O.~)] + PA, (y), 

1 - m i n [ P ~ ,  (0.3), PA, (0-6)1 + PA, (Y) 1 
= min[l,  0.4 + PA, (y), 0.7 + PA2 (Y)] (8.36) 

which is plotted in Fig. 8.5. From Fig. 8.5 we see that supyEV pat ( y )  is achieved 
in the interval [0.3,0.4], so the mean of maxima defuzzifier gives 

(d) From Fig. 8.5 we see that in this case jjl = 0, j j 2  = 1, wl = 1 and wz = 1. 
So the center average defuzzifier (8.18) gives 

8.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The definitions and intuitive meanings of the singleton, Gaussian and tri- 
angular fuzzifiers, and the center of gravity, center average and maximum 
defuzzifiers. 

Computing the outputs of the fuzzy systems for different combinations of the 
fuzzifiers, defuzzifiers, and fuzzy inference engines for specific examples. 

Different defuzzification schemes were studied in detail in the books Driankov, 
Hellendoorn and Reifrank [I9931 and Yager and Filev [1994]. 
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Figure 8.5. A graphical representation of the membership 
function p ~ ,  (21) of (8.36). 

8.4 Exercises 

Exercise 8.1. Suppose that a fuzzy rule base consists of the M rules (7.1) with 

and that we use the triangular fuzzifier (8.3). Determine the output of the fuzzy 
inference engine ~ B I  ( y ) for: 

(a) product inference engine (7.23) with all * = algebraic product, and 

(b) minimum inference engine (7.24) with all * = min. 

Exercise 8.2. Consider Example 8.1 and determine the y* using the indexed 
center of gravity defuzzifier with a = 0.1. Compute the y* for the specific values of 
wl and wz in Table 8.1. 

Exercise 8.3. ~oAsider Example 8.2 and determine the fuzzy system output 
y* (with input (x: , xg) = (0.3,0.6)) for: 

(a) Zadeh inference engine (7.31) and maximum (or mean of maxima) defuzzifier, 
and 
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(b) Dienes-Rescher inference engine (7.32) with maximum (or mean of maxima) 
defuzzifier. 

Exercise 8.4. Use a practical example, such as the mobile robot path planning 
problem, to show that the center of gravity and center average defuzzifiers may 
create problems when the.fuzzy set B' is non-convex. 

Exercsie 8.5. When the fuzzy set B' is non-convex, the so-called center of 
largest area defuzzifier is proposed. This method determines the convex part of B' 
that has the largest area and defines the crisp output y* to be the center of gravity 
of this convex part. Create a specific non-convex B' and use the center of largest 
area defuzzifier to determine the defuzzified output y * .  



Chapter 9 

Fuzzy Systems as Nonlinear 
Mappings 

9.1 The Formulas of Some Classes of Fuzzy Systems 

From Chapters 7 and 8 we see that there are a variety of choices in the fuzzy infer- 
ence engine, fuzzifier, and defuzzifier modules. Specifically, we proposed five fuzzy 
inference engines (product, minimum, Lukasiewicz, Zadeh, and Dienes-Rescher), 
three fuzzifiers (singleton, Gaussian and triangular), and three types of defuzzi- 
fiers (center-of-gravity, center average, and maximum). Therefore, we have at least 
5 * 3 * 3 = 45 types of fuzzy systems by combining these different types of infer- 
ence engines, fuzzifiers, and defuzzifiers. In this chapter, we will derive the detailed 
formulas of certain classes of fuzzy systems. We will see that some classes of fuzzy 
systems are very useful, while others do not make a lot of sense. That is, not every 
combination results in useful fuzzy systems. Because in Chapter 8 we showed that 
the center-of-gravity defuzzifier is computationally expensive and the center average 
defuzzifier is a good approximation of it, we will not consider the center-of-gravity 
defuzzifier in this chapter. We classify the fuzzy systems to be considered into 
two groups: fuzzy systems with center average defuzzifier, and fuzzy systems with 
maximum defuzzifier. 

9.1.1 Fuzzy Systems with Center Average Defuzzifier 

Lemma 9.1. Suppose that the fuzzy set B1 in (7.1) is normal with center gl.  
Then the fuzzy systems with fuzzy rule base (7.1), product inference engine (7.23), 
singleton fuzzifier (8.1), and center average defuzzifier (8.18) are of the following 
form: 



Sec. 9.1. The Formulas of Some Classes of Fuzzy Systems 119 

where x E U c Rn is the input to the fuzzy system, and f(x) E V C R is the 
output of the fuzzy system. 

Proof: Substituting (8.1) into (7.23), we have 

Since for a given input x f ,  the center of the ltth fuzzy set in (9.2) (that is, the fuzzy 
set with membership function pA! (x;)pBt ( y ) )  is the center of B ~ ,  we see that the jjl 
in (8.18) is the same jjl in this lemma. Additionally, the height of the ltth fuzzy set 
in (9.2), denoted by wl in (8.18), is ny=, p ~ :  (x;)pBl (9') = ny=l pAf (xb) (since B1 
is normal). Hence, using the center average defuzzifier (8.18) for (9.2), we obtain 

Using the notion of this lemma, we have x* = x and y* = f (x); thus, (9.3) becomes 
(9.1). 

From Lemma 9.1 we see that the fuzzy system is a nonlinear mapping from 
x E U c Rn to f (x) E V C R, and (9.1) gives the detailed formula of this mapping. 
The fuzzy systems in the form of (9.1) are the most commonly used fuzzy systems 
in the literature. They are computationally simple and intuitively appealing. From 
(9.1) we see that the output of the fuzzy system is a weighted average of the centers 
of the fuzzy sets in the THEN parts of the rules, where the weights equal the 
membership values of the fuzzy sets in the IF parts of the rules at the input point. 
Consequently, the more the input point agrees with the IF part of a rule, the larger 
weight this rule is given; this makes sense intuitively. 

Lemma 9.1 also reveals an important contribution of fuzzy systems theory that 
is summarized as follows: 

The dual role of fuzzy systems: On one hand, fuzzy systems are rule- 
based systems that are constructed from a collection of linguistic rules; on 
the other hand, fuzzy systems are nonlinear mappings that in many cases can 
be represented by precise and compact formulas such as (9.1). An important 
contribution of fuzzy systems theory is to provide a systematic procedure for 
transforming a set of linguistic rules into a nonlinear mapping. Because non- 
linear mappings are easy to implement, fuzzy systems have found their way 
into a variety of engineering applications. 

By choosing different forms of membership functions for pAf: and ~ B I ,  we ob- 
tain different subclasses of fuzzy systems. One choice of and pg1 is Gaussian 
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membership function. Specifically, if we choose the following Gaussian membership 
function for ,uA{ and ~ B I  : 

where af E (O,l], cri E (0, m) and z:, jj' E R are real-valued parameters, then the 
fuzzy systems in Lemma 9.1 become 

We call the fuzzy systems in the form of (9.6) fuzzy systems with product inference 
engine, singleton fuzzijier, center average defuzzijier, and Gaussian membership 
functions. Other popular choices of pA! and pBi are tciangular and trapezoid mem- 
bership functions. We will study the f<zzy systems with these types of membership 
functions in detail in Chapters 10 and 11. 

Another class of commonly used fuzzy systems is obtained by replacing the 
product inference engine in Lemma 9.1 by the minimum inference engine. Using 
the same procedure as in the proof of Lemma 9.1, we obtain that the fuzzy systems 
with fuzzy rule base (%I), minimum inference engine (7.24), singleton fuzzifier 
(8.1), and center average defuzzifier (8.18) are of the following form: 

where the variables have the same meaning as in (9.1). 

We showed in Chapter 8 (Lemma 8.1) that if the membership functions for 
At are Gaussian, then the Gaussian fuzzifier also significantly simplifies the fuzzy 
inference engine. What do the fuzzy systems look like in this case? 

Lemma 9.2. The fuzzy systems with fuzzy rule base (7.1), product inference 
engine (7.23), Gaussian fuzzifier (8.2) with *=product, center average defuzzifier 
(8.18), and Gaussian membership functions (9.4) and (9.5) (with at = 1) are of the 
following form: 

If we replace the product inference engine (7.23) with the minimum inference engine 
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(7.24) and use * = min in (8.2), then the fuzzy systems become 

Proof: Substituting (8.6) into (8.5) and use x for x*, we have 

Using the same arguments as in the proof of Lemma 9.1 and applying the center 
average defuzzifier (8.18) to (9. lo), we obtain (9.8). Similarly, substituting (8.8) 
into (8.7), we have 

Applying the center average defuzzifier (8.18) to (9.11), we obtain (9.9). 

In Chapter 7 we saw that the product and minimum inference engines are quite 
different from the Lukasiewicz, Zadeh and Dienes-Rescher inference engines. What 
do the fuzzy systems with these inference engines look like? 

Lemma 9.3. If the fuzzy set B~ in (7.1) are normal with center jj" then the fuzzy 
systems with fuzzy rule base (7.1), Lukasiewicz inference engine (7.30) or Dienes- 
Rescher inference engine (7.32), singleton fuzzifier (8.1) or Gaussian fuzzifier (8.2) 
or triangular fuzzifier (8.3), and center average defuzzifier (8.18) are of the following 
form: 

. M  

Proof: Since ~ B I  (gl) = 1, we have 1 - minYZl (pAf (xi)) + pBi (jjl) 2 1; therefore, 
the height of the l'th fuzzy set in (7.30) is 

n 
url = sup min[paj (XI, 1 - min(~,4: (xi)) + ~ s l  (a1)] 

xEU 2=1 
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where we use the fact that for all the three fuzzifiers (8.1)-(8.3) we have supzEu PA, (x) 
= 1. Similarly, the height of the E'th fuzzy set in (7.32) is also equal to one. Hence, 
with the center average defuzzifier (8.18) we obtain (9.12). 

The fuzzy systems in the form of (9.12) do not make a lot of sense because it 
gives a constant output no matter what the input is. Therefore, the combinations 
of fuzzy inference engine, fuzzifier, and defuzzifier in Lemma 9.3 do not result in 
useful fuzzy systems. 

9.1.2 Fuzzy Systems with Maximum Defuzzifier 

Lemma 9.4. Suppose the fuzzy set B1 in (7.1) is normal with center gl, then the 
fuzzy systems with fuzzy rule base (7.1), product inference engine (7.23), singleton 
fuzzifier (8.1), and maximum defuzzifier (8.23) are of the following form: 

where 1* E {1,2, ..., M) is such that 

for all 1 = 1,2, ..., M. 

Proof: From (7.28) (Lemma 7.3) and noticing that x* = x in this case, we have 

Since supyev and max& are interchangeable and B1 is normal, we have 

where l* is defined according to (9.15). Since / A ~ I ( ~ ' * )  5 1 when 1 # I* and 
pgl* (gl*) = 1, we have 
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Hence, the sup,,, in (9.16) is achieved at  jjl*. Using the maximum defuzzifier 
(8.23) we obtain (9.14). 

From Lemma 9.4 we see that the fuzzy systems in this case are simple functions, 
that is, they are piece-wise constant functions, and these constants are the centers 
of the membership functions in the THEN parts of the rules. From (9.15) we see 
that as long as the product of membership values of the IF-part fuzzy sets of the 
rule is greater than or equal to those of the other rules, the output of the fuzzy 
system remains unchanged. Therefore, these kinds of fuzzy systems are robust to 
small disturbances in the input and in the membership functions pA<xi). However, 
these fuzzy systems are not continuous, that is, when I* changes fr6m one number 
to the other, f (x) changes in a discrete fashion. If the fuzzy systems are used in 
decision making or other open-loop applications, this kind of abrupt change may 
be tolerated, but it is usually unacceptable in closed-loop control. 

The next lemma shows that we can obtain a similar result if we use the minimum 
inference engine. 

Lemma 9.5. If we change the product inference engine in Lemma 9.4 to the 
minimum inference engine (7.24) and keep the others unchanged, then the fuzzy 
systems are of the same form as (9.14) with 1* determined by 

n n 
"ln[P~;* $=I ("ill 2 rnln[P~: 2=1 (9.19) 

where 1 = 1,2, ..., M. 

Proof: From (7.29) (Lemma 7.3) and using the facts that sup,,, and maxE, 
are interchangeable and that B1 are normal, we have 

M n. 
= m a x [ m l n ( ~ ~ :  1=1 i=l (xi) )I 

n 
= mln(p~:* (xi)) i=l 

Also from (7.29) we have that p ~ l  (jjl*) = mi$==, (pAf* (xi)), thus the sup,,, in 

(9.20) is achieved at  gl* .  Hence, the maximum defuzzifier (8.23) gives (9.14). 

Again, we obtain a class of fuzzy systems that are simple functions. 

It is difficult to  obtain closed-form formulas for fuzzy systems with maximum de- 
fuzzifier and Lukasiewicz, Zadeh, or Dienes-Rescher inference engines. The difficulty 
comes from the fact that the sup,,, and min operators are not interchangeable 
in general, therefore, from (7.30)-(7.32) we see that the maximum defuzzification 
becomes an optimization problem for a non-smooth function. In these cases, for a 
given input x, the output of the fuzzy system has to be computed in a step-by-step 
fashion, that is, computing the outputs of fuzzifier, fuzzy inference engine, and de- 
fuzzifier in sequel. Note that the output of the fuzzy inference engine is a function, 



124 Fuzzy Systems as Nonlinear Mappings Ch. 9 

not a single value, so the computation is very complex. We will not use this type 
of fuzzy systems (maximum defuzzifier with Lukasiewicz, Zadeh, or Dienes-rescher 
inference engine) in the rest of this book. 

9.2 Fuzzy Systems As Universal Approximators 

In the last section we showed that certain types of fuzzy systems can be written 
as compact nonlinear formulas. On one hand, these compact formulas simplify the 
computation of the fuzzy systems; on the other hand, they give us a chance to ana- 
lyze the fuzzy systems in more details. We see that the fuzzy systems are particular 
types of nonlinear functions, so no matter whether the fuzzy systems are used as 
controllers or decision makers or signal processors or any others, it is interesting to 
know the capability of the fuzzy systems from a function approximation point of 
view. For example, what types of nonlinear functions can the fuzzy systems rep- 
resent or approximate and to what degree of accuracy? If the fuzzy systems can 
approximate only certain types of nonlinear functions to a limited degree of accu- 
racy, then the fuzzy systems would not be very useful in general applications. But 
if the fuzzy systems can approximate any nonlinear function to arbitrary accuracy, 
then they would be very useful in a wide variety of applications. In this section, we 
prove that certain classes of fuzzy systems that we studied in the last section have 
this universal approximation capability. Specifically, we have the following main 
theorem. 

Theorem 9.1 (Universal Approximation Theorem). Suppose that the 
input universe of discourse U is a compact set in Rn. Then, for any given real 
continuous function g(x) on U and arbitrary 6 > 0, there exists a fuzzy system f (x) 
in the form of (9.6) such that 

That is, the fuzzy systems with product inference engine, singleton fuzzifier, center 
average defuzzifier, and Gaussian membership functions are universal approxima- 
tors. 

One proof of this theorem is based on the following Stone-Weierstrass Theorem, 
which is well known in analysis. 

Stone-Weierstrass Theorem (Rudin [1976]). Let Z be a set of real continuous 
functions on a compact set U .  If (i) Z is an algebra, that is, the set Z is closed 
under addition, multiplication, and scalar multiplication; (ii) Z separates points on 
U, that is, for every x, y E U ,  x # y, there exists f E Z such that f (x) # f (y); and 
(iii) Z vanishes at no  point of U, that is, for each x E U there exists f E Z such 
that f (x) # 0; then for any real continuous function g(x) on U and arbitrary 6 > 0, 
there exists f E Z such that supzEu I f  (a) - g(x)l < E .  

Proof of Theorem 9.1: Let Y be the set of all fuzzy systems in the form of 
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(9.6). We now show that Y is an algebra, Y separates points on U, and Y vanishes 
at  no point of U. 

Let f l ,  f2 E Y, so that we can write them as 

Hence, 

(9.24) 
a: -fl?lfl z -&!2 

Since alf1a2f2exp(- (w )2 - ( + @ ) 2 )  can be represented in the form of (9.4) 

and il" + 6212 can be viewed as the center of a fuzzy set in the form of (9.5), 
f l (x)  + f2(x) is in the form of (9.6); that is, fl + f2  E Y. Similarly, 

(9.25) 
which also is in the form of (9.6), hence, fl f2  E Y. Finally, for arbitrary c E R, 

which is again in the form of (9.6), so cfl E Y. Hence, Y is an algebra. 

We show that Y separates points on U by constructing a required fuzzy system 
f (x). Let xO, zO E U be two arbitrary points and xO # zO. We choose the parameters 
of the f (x) in the form of (9.6) as follows: M = 2, y1 = 0, y2 = 1, af = 1, (T: = 1 , ~ :  = 
xp and 3: = 29, where i = 1,2, ..., n and I = 1,2. This specific fuzzy system is 

from which we have 
exp(-llxO - zO1l?) 

f(xO) 1 + exp(-11x0 - ~011:) 
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and 

Since xO # zO, we have exp(- 1 lxO - zO 11;) # 1 which, from (9.28) and (9.29), gives 
f (xO) # f (zO). Hence, Y separates points on U. 

To show that Y vanishes at no point of U, we simply observe that any fuzzy 
system f (x) in the form of (9.6) with all yZ > 0 has the property that f (x) > 0, Vx E 
U. Hence, Y vanishes at no point of U. 

In summary of the above and the Stone-Weierstrass Theorem, we obtain the 
conclusion of this theorem. 

Theorem 9.1 shows that fuzzy systems can approximate continuous functions to 
arbitrary accuracy; the following corollary extends the result to discrete functions. 

Corollary 9.1. For any square-integrable function g(x) on the compact set 
U c Rn, that is, for any g E L2(U) = {g : U -t RI JU lg(x)I2dx < m), there exists 
fuzzy system f (x) in the form of (9.6) such that 

Proof: Since U is compact, JU dx = E < m. Since continuous functions on 
U form a dense subset of L2(U) (Rudin [1976]), for any g E L2(U) there exists a 
continuous function g on U such that (JU lg(x) - g ( x ) ~ ~ d x ) l / ~  < €12. By Theorem 
9.1, there exists f E Y such that supzEu I f  (x) - g(x) I < E / ( ~ E ' / ~ ) .  Hence, we have 

Theorem 9.1 and Corollary 9.1 provide a justification for using fuzzy systems 
in a variety of applications. Specifically, they show that for any kind of nonlinear 
operations the problem may require, it is always possible to design a fuzzy system 
that performs the required operation with any degree of accuracy. They also provide 
a theoretical explanation for the success of fuzzy systems in practical applications. 

However, Theorem 9.1 and Corollary 9.1 give only existence result; that is, they 
show that there exists a fuzzy system in the form of (9.6) that can approximate any 
function to arbitrary accuracy. They do not show how to find such a fuzzy system. 
For engineering applications, knowing the existence of an ideal fuzzy system is 
not enough; we must develop approaches that can find good fuzzy systems for the 
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particular applications. Depending upon the information provided, we may or may 
not find the ideal fuzzy system. In the next few chapters, we will develop a variety 
of approaches to designing the fuzzy systems. 

9.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The compact formulas of zome useful classes of fuzzy systems. 

How to derive compact formulas for any classes of fuzzy systems if such com- 
pact formulas exist. 

How to use the Stone-Weierstrass Theorem. 

The derivations of the mathematical formulas of the fuzzy systems are new. A 
related reference is Wang [1994]. The Universal Approximation Theorem and its 
proof are taken from Wang [1992]. Other approaches to this problem can be found 
in Buckley [1992b] and Zeng and Singh [1994]. 

9.4 Exercises 

Exercise 9.1. Derive the compact formula for the fuzzy systems with fuzzy 
rule base (7.1), Zadeh inference engine (7.31), singleton fuzzifier (8.1), and center 
average defuzzifier (8.18). 

Exercise 9.2. Repeat Exercise 9.1 using Lukasiewicz inference engine rather 
than Zadeh inference engine. 

Exercise 9.3. Show that the fuzzy systems in the form of (9.1) have the uni- 
versal approximation property in Theorem 9.1. 

Exercise 9.4. Can you use the Stone-Weierstrass Theorem to prove that fuzzy 
systems in the form of (9.7) or (9.6) with a: = 1 are universal approximators? 
Explain your answer. 

Exercise 9.5. Use the Stone-Weierstrass Theorem to prove that polynomials 
are universal appproximators. 

Exercise 9.6. Plot the fuzzy systems fi(x) and fi(x) for x E U = [-I, 21 x 
[-l,2], where f ~ ( x )  is the fuzzy system with the two rules (8.27) and (8.28), product 
inference engine (7.23), singleton fuzzifier (8. I) ,  and maximum defuzzifier (8.23), 
and fi(x) is the same as f ~ ( x )  except that the maximum defuzzifier is replaced by 
the center average defuzzifier (8.18). 



Chapter 10 

Approximation Properties of 
Fuzzy Systems I 

In Chapter 9 we proved that fuzzy systems are universal approximators; that is, they 
can approximate any function on a compact set to arbitrary accuracy. However, this 
result showed only the existence of the optimal fuzzy system and did not provide 
methods to find it. In fact, finding the optimal fuzzy system is much more difficult 
than proving its existence. Depending upon the information provided, we may or 
may not find the optimal fuzzy system. 

To answer the question of how to find the optimal fuzzy system, we must first 
see what information is available for the nonlinear function g(x) : U C Rn -+ R, 
which we are asked to approximate. Generally speaking, we may encounter the 
following three situations: 

The analytic formula of g(x) is known. 

The analytic formula of g(x) is unknown, but for any x E U we can determine 
the corrspending g(x). That is, g(x) is a black box-we know the input-output 
behavior of g(x) but do not know the details inside it. 

The analytic formula of g(x) is unknown and we are provided only a limited 
number of input-output pairs (xj,  g(xj)), where x j  E U cannot be arbitrarily 
chosen. 

The first case is not very interesting because if the analytic formula of g(x) is 
known, we can use it for whatever purpose the fuzzy system tries to achieve. In 
the rare case where we want to replace g(x) by a fuzzy system, we can use the 
methods for the second case because the first case is a special case of the second 
one. Therefore, we will not consider the first case separately. 

The second case is more realistic. We will study it in detail in this and the 
following chapters. 



Sec. 10.1. Preliminary Concepts 129 

The third case is the most general one in practice. This is especially true for 
fuzzy control because stability requirements for control systems may prevent us from 
choosing the input values arbitrarily. We will study this case in detail in Chapters 
12-15. 

So, in this chapter we assume that the analytic formula of g(x) is unknown but 
we can determine the input-output pairs (x; g(x)) for any x E U .  Our task is to 
design a fuzzy system that can approximate g(x) in some optimal manner. 

10.1 Preliminary Concepts 

We first introduce some concepts. 

Definition 10.1: Pseudo-Trapezoid Membership Function. Let [a, dJ c R. The 
pseudo-trapezoid membership function of fuzzy set A is a continuous function in R 
given by 

I(x), x E [a, b) 

PA(X; a,  b, c, d, H )  = 
H,  x E [b, cl 
D(x>, x E (c, dl (10.1) 

0, x E R - (a, d) 

where a 5 b 5 c 5 d, a < d, 0 < H 5 1,O 5 I(x)  5 1 is a nondecreasing function 
in [a, b) and 0 5 D(x) 5 1 is a nonincreasing function in (c, 4. When the fuzzy 
set A is normal (that is, H = I ) ,  its membership function is simply written as 
PA(%; a ,  b, c, dl. 

Fig. 10.1 shows some examples of pseudo-trapezoid membership functions. If the 
universe of discourse is bounded, then a, b, c, d are finite numbers. Pseudo-trapezoid 
membership functions include many commonly used membership functions as sp&- 
cia1 cases. For example, if we choose 

x - a  x - d  
I(x) = - , D(x) = - 

b - a  c - d  

then the pseudo-trapezoid membership functions become the trapezoid membership 
functions. If b = c and I($) and D(x)  are as in (10.2), we obtain the triangular 
membership functions; a triangular membership function is denoted as PA (x; a,  b, d). 
If we choose a = o o , b = c = % , d  = m, and 

then the pseudo-trapezoid membership functions become the Gaussian membership 
functions. Therefore, the pseudo-trapezoid membership functions constitute a very 
rich family of membership functions. 

Definition 10.2: Completeness of Fuzzy Sets. Fuzzy sets A', A2, ..., AN in 
W C R are said to be complete on W if for any x E W, there exists Aj such that 
 PA^ (2) > 0. 
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Figure 10.1. Examples of pseudo-trapezoid membership 
functions. 

Definition 10.3: Consistency of Fuzzy Sets. Fuzzy sets A', A2, ..., AN in W C 
R are said to be consistent on W if p ~ j  ( x )  = 1 for some x E W implies that 

( x )  = 0 for all i # j. 
Definition 10.4: High Set of Fuzzy Set. The high set of a fuzzy set A in W C R 

is a subset in W defined by 

If A is a normal fuzzy set with pseudo-trapezoid membership function PA(%; a, b, C ,  d) ,  
then hgh(A) = [b,c]. 

Definition 10.5: Order Between Fuzzy Sets. For two fuzzy sets A and B in 
W c R, we say A > B if hgh(A) > hgh(B) (that is, if x E hgh(A) and x' E hgh(B), 
then x > 2'). 

We now show some properties of fuzzy sets with pseudo-trapezoid membership 
functions. 

Lemma 10.1. If A1, A2, .. ., AN are consistent and normal fuzzy sets in W c R 
with pseudo-trapezoid membership functions ( x ;  ai, bi, ci, di) (i = 1,2, ..., N ) ,  
then there exists a rearrangement { i l ,  i2 ,  ..., i N )  of {1,2, ..., N )  such that 

Proof: For arbitrary i ,  j E {1,2, ..., N ) ,  it must be true that [bi, ci]n[bj,cj]  = 0 ,  
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since otherwise the fuzzy sets A', ..., AN would not be consistent. Thus, there exists 
a rearrangement {il,i2, ..., iN} of {1,2, ..., N )  such that 

which implies (10.5). 

Lemma 10.1 shows that we can always assume A1 < A2 < ... < AN without 
loss of generality. 

Lemma 10.2. Let the fuzzy sets A', A2, ..., AN in W c R be normal, consistent 
and complete with pseudo-trapezoid membership functions p ~ i  (x; ai, bi, ci, di). If 
A' < A2 < ... < AN, then 

ci I ai+i < di 5 bi+i (10.7) 

f o r i = l , 2  ,..., N - 1 .  

Fig. 10.2 illustrates the assertion of Lemma 10.2. The proof of Lemma 10.2 is 
straightforward and is left as an exercise. 

Figure 10.2. An example of Lemma 10.2: ci I ai+l < 
di I bi+l. 

10.2 Design of Fuzzy System 

We are now ready to design a particular type of fuzzy systems that have some nice 
properties. For notational simplicity and ease of graphical explanation, we consider 
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two-input fuzzy systems; however, the approach and results are all valid for general 
n-input fuzzy systems. That is, we can use exactly the same procedure to design 
n-input fuzzy systems. We first specify the problem. 

The Problem: Let g(x) be a function on the compact set U = [al,&] x 
[a2, ,821 c R2 and the analytic formula of g(x) be unknown. Suppose that for any 
x E U ,  we can obtain g(x) . Our task is to design a fuzzy system that approximates 
g(x). 

We now design such a fuzzy system in a step-by-step manner. 

Design of a Fuzzy System: 

S tep  1. Define Ni (i = 1,2) fuzzy sets At, A:, ..., A? in [ai, Pi] which are 
normal, consistent, complete with pesudo-trapezoid membership functions 

N .  N .  
pA:(~i;a:,b:,ct,d~), ...,pA$ xi;af",bf",ci ' , d ,  ' ) ,and At < A: < < A? 
with at = b: = ai and cf" = df" = a. Define e: = al,el"f = PI, and 
e 3 - 1  ; - ?(b; 3 + 4) for j = 2,3, ..., Nl - 1. Similarly, define ei = a2,  e p  = P2, 
and ei = $(bi + 4) for j = 2 ,3 ,  ..., N2 - 1. Fig. 10.3 shows an example with 
Nl =3,N2 = 4 , a l  =a2  = O  andpl  =P2 = 1. 

Figure 10.3. An example of the fuzzy sets defined in Step 
1 of the design procedure. 

S tep  2. Construct M = Nl x N2 fuzzy IF-THEN rules in the following form: 

R U ~ ~ ~ ~  : IF x1 is  A? and x2 is A:, THEN 9 is  B~~~~ (10.8) 
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where i l  = 1,2, ..., NI,  i2 = 1,2, ..., N2, and the center of the fuzzy set Bili2, 
denoted by jjiliz, is chosen as 

For the example in Fig. 10.3, we have 3 x 4 = 12 rules, and the centers of Bili2 
are equal to the g(x) evaluated at the 12 dark points shown in the figure. 

Step 3. Construct the fuzzy system f (x) from the Nl x N2 rules of (10.8) using 
product inference engine (7.23), singleton fuzzifier (8.1) , and center average 
defuzzifier (8.18) (see Lemma 9.1) : 

Since the fuzzy sets A:, ... A? are complete, at every x E U there exist i l  and 
i2 such that p,;, (x1)pAt2 (x2) # 0. Hence, the fuzzy system (10.10) is well defined, 

2 

that is, its denominator is always nonzero. 

From Step 2 we see that the IF parts of the rules (10.8) constitute all the possible 
combinations of the fuzzy sets defined for each input variable. So, if we generalize 
the design procedure to n-input fuzzy systems and define N fuzzy sets for each input 
variable, then the total number of rules is N n  that is, by using this design method, 
the number of rules increases exponentially with the dimension of the input space. 
This is called the curse of dimensionality and is a general problem for all high- 
dimensional approximation problems. We will address this issue again in Chapter 
22. 

The final observation of the design procedure is that we must know the values 
of g(z) a t  x = (ell, ey )  for i l  = 1,2, ..., Nl and i2 = 1,2, ..., N2. Since (e?, e:) can 
be arbitrary points in U, this is equivalent to say that we need to know the values 
of g(x) a t  any x E U. 

Next, we study the approximation accuracy of the f (x) designed above to  the 
unknown function g(x) . 

10.3 Approximation Accuracy of the Fuzzy System 

Theorem 10.1. Let f (x)  be the fuzzy system in (10.10) and g(x) be the unknown 
function in (10.9). If g(x) is continuously differentiable on U = [al ,Pl]  x [az,P2], 
then 

where the infinite norm 1 1  * 11, is defined as l/d(x)lloo = supzEu Id(x)l, and hi = 

maxl< j<~ , - l  - - lei+' - eil (i = 1,2). 
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Proof: Let Uili2 = [e? , e?+ '1 x [e"j2 e?"], where il  = 1,2, ..., Nl - 1 and 
Ni-1 N. i2 = 1,2, ..., N2 - 1. Since [ai, pi] = [ei, e:] u [e:, e:] u . - . u [ei , ei $1, i = 1,2, we 

have 
N1-1 N2-I 

U = [ a l , h ]  x [ a 2 , 8 1 =  U U uhi2 (10.12) 
il=l iz=l 

which implies that for any x E U, there exists Uili2 such that x E uili2. Now 
suppose x E Uili2, that is, xl E [e? , e?"] and 2 2  E [e? , e?+'] (since x is fixed, 
il and i2 are also fixed in the sequel). Since the fuzzy sets A:, ..., A? are normal, 
consistent and complete, at least one and at most two pAj1 ($1) are nonzero for 

1 

jl = 1,2, ..., Nl. From the definition of eil (jl = 1,2, ..., Nl - I) ,  these two possible 
nonzero PA;' (21)'s are pAp (XI) and pAp+l (XI). Similarly, the two possible nonzero 

PA:, ( ~ 2 ) ' s  (for j 2  = 1,2, ..., N2) are p y  ("2) and pA2+l (x2). Hence, the fuzzy 
system f (x) of (10.10) is simplified to 

where we use (10.9). Since 

we have 

I max ji=i1,il+l;jz=i~,i~+1 Idx) - g(eI1, e ? ) ~  

Using the Mean Value Theorem, we can further write (10.15) as 

I ~ x )  - f (.)I 5 max 89 jl 89 
j l = i l , i l + l ; ~ = i 2 , i 2 + l ( I l ~ l l ~  -el  I + ll-IImlx2 8x2 

- 

Since x E Uili2, which means that xl E [e? , eP+l] and x2 E [e?, we have 
that 1x1 -eF1 5 le?" - e ? ~  and 1x2 - e?l 5 le? -e?+ll for jl = i l , i l  + 1 and 
j 2  = i2,ia + 1. Thus, (10.16) becomes 
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from which we have 

Theorem 10.1 is an important theorem. We can draw a number of conclusions 
from it, as follows: 

From (10.11) we can conclude that fuzzy systems in the form of (10.10) are 
universal approximators. Specifically, since 1 1  2 I l m  and 1 1  % 1 l m  are finite 
numbers (a continuous function on a compact set is bounded by a finite num- 
ber), for any given E > 0 we can choose hl and h2 small enough such that 
~ l $ l l ~ h l  + ~ l % l l ~ h z  < t. Hence from (10.11) we have supXEv /g(x) - 
f (211 = 119 - f llm < 6 .  

From (10.11) and the definition of hl and h2 we see that more accurate ap- 
proximation can be obtained by defining more fuzzy sets for each xi. This 
confirms the intuition that more rules result in more powerful fuzzy systems. 

From (10.11) we see that in order to design a fuzzy system with a prespecified 
accuracy, we must know the bounds of the derivatives of g(x) with respect to 
xl and x2, that is, I I 2 B;I L and 1 1  f& 1 l m .  In the design process, we need to 
know the value of g(x) at  z = (e? , e?) for il = 1,2, ..., Nl and i2 = 1,2, ..., N2. 
Therefore, this approach requires these two pieces of information in order for 
the designed fuzzy system to achieve any prespecified degree of accuracy. 

a From the proof of Theorem 10.1 we see that if we change pAil (x1)pA2 (22) 

to min[p i, (XI), pAi2 (x2)], the proof is still vaild. Therefore, if we use mini- 
-41 

mum inference engine in the design procedure and keep the others unchanged, 
the designed fuzzy system still has the approximation property in Theorem 
10.1. Consequently, the fuzzy systems with minimum inference engine, sin- 
gleton fuzzifier, center average defuzzifier and pseudo-trapezoid membership 
functions are universal approximators. 

Theorem 10.1 gives the accuracy of f (x) as an approximator to g(x). The next 
lemma shows at what points f (x) and g(x) are exactly equal. 

Lemma 1 0 . 3 .  Let f (x) be the fuzzy system (10.10) and e b n d  ep be the 
points defined in the design procedure for f (x). Then, 
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for il  = 1,2, ..., Nl and i2 = 1,2,  ..., N2. 

Proof: From the definition of e$nd e? and the fact that AP'S are normal, we 
have pa: (ep ) = pa? (e?) = 1. Since the fuzzy sets A:, A:, ..., A? (i = 1,2) are 

consistent, we have that pAjl (ey ) = pAjz (e?) = 0 for jl # i l  and jz # iz .  Hence 
2 

2122 = g(eZ;l,e?). from (10.10) and (10.9) we have f ( e k  e?) = jj' ' 

Lemma 10.3 shows that the fuzzy system (10.10) can be viewed as an inter- 
polation of function g(x) at some regular points (ey , e?) (il = 1,2, ..., Nl, i2 = 
1,2, ..., N2) in the universe of discourse U. This is intuitively appealing. 

Finally, we show two examples of how to use Theorem 10.1 to design the required 
fuzzy system. 

Example 10.1. Design a fuzzy system f (x) to uniformly approximate the 
continuous function g(x) = sin(x) defined on U = [-3,3] with a required accuracy 
of E = 0.2; that is, supxEu Jg(x) - f (x)J < 6 .  

Since 1 1 %  11, = Ilcos(x)II, = 1, from (10.11) we see that the fuzzy system with 
h = 0.2 meets our requirement. Therefore, we define the following 31 fuzzy sets AJ 
in U = [-3,3] with the triangular membership functions 

and 
pAj (x) = pAj (x; ej-l , e  j , e  j+l ) 

where j = 2,3, ..., 30, and ej  = -3 + 0.2(j - 1). These membership functions are 
shown in Fig. 10.4. According to  (10.10), the designed fuzzy system is 

which is plotted in Fig.lO.5 against g(x) = sin(x). We see from Fig.10.5 that f (x) 
and g(x) are almost identical. 

Example 10.2. Design a fuzzy system to  uniformly approximate the function 
g(x) = 0.52 + 0 . 1 ~ ~  + 0.2822 - 0.06x1x2 defined on U = [-I, 11 x [-I, 11 with a 
required accuracy of E = 0.1. 

Since llzllw = supztu 10.1 - 0.06x2l = 0.16 and I I ~ I I ,  = supXtu 10.28 - 
0 . 0 6 ~ ~ )  = 0.34, from (10.11) we see that hl = hz = 0.2 results in - f 11, 5 
0.16 * 0.2 + 0.34 * 0.2 = 0.1. Therefore, we define 11 fuzzy sets Aj ( j  = 1,2, .. ., 11) 
in [- 1, I] with the following triangular membership functions: 

p ~ 1  (x) = pA1(x; -1, -1, -0.8) (10.24) 
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Figure 10.4. Membership functions in Example 10.1. 

Figure 10.5. The designed fuzzy system f(x)  and the 
function g(x) = six(%) (they are almost identical). 
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and 
 PA^ (x) = P A j  (x; ej-l , 2, ej+l) 

for j = 2,3, ..., 10, where ej  = -1 + 0.2(j - 1). The fuzzy system is constructed 
from the following 11 x 11 = 121 rules: 

IF XI i s  and xz i s  Ai2, T H E N  y i s  B~~~~ (10.27) 
. . 

where il , i 2  = 1,2, . . . ,11, and the center of Bhi2 is galZ2 = g(eil, ei2). The final 
fuzzy system is 

From Example 10.2 we see that we need 121 rules to approximate the function 
g(x). Are so many rules really necessary? In other words, can we improve the 
bound in (10.11) so that we can use less rules to approximate the same function 
to the same accuracy? The answer is yes and we will study the details in the next 
chapter. 

10.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The three types of approximation problems (classified according to the infor- 
mation available). 

The concepts of completeness, consistence, and order of fuzzy sets, and their 
application to fuzzy sets with pseudo-trapezoid membership functions. 

For a given accuracy requirement, how to design a fuzzy system that can 
approximate a given function to the required accuracy. 

The idea of proving the approximation bound (10.11). 

Approximation accuracies of fuzzy systems were analyzed in Ying [I9941 and 
Zeng and Singh (19951. This is a relatively new topic and very few references are 
available. 

10.5 Exercises 

Exercise 10.1. Let fuzzy sets Aj in U = [a, b] ( j  = 1,2, ..., N) be normal, 
consistent, and complete with pseudo-trapezoid membership functions  PA^ (x) = 
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PAj (x; a j ,  b j ,  cj, dj). Suppose that A1 < A2 < . - .  < AN. Define fuzzy sets B j  
whose membership functions are given as 

Show that: 

(a) P g j  (x) ( j  = 1,2, ..., N) are also pesudo-trapezoid membership functions. 

(b) The fuzzy sets Bj ( j  = 1,2, ..., N) are also normal, consistent, and complete. 

(d) If P A j  (2) = PAj (x; a j ,  bj, c j ,  dj) are trapezoid membership functions with 
Ci = ai+l, di = bi+l for i = 1,2, ..., N - 1, then p ~ j  (2) = PAj (x) for j = 1,2, ..., N - 
1. 

Exercise 10.2. Design a fuzzy system to uniformly approximate the function 
g(x) = sin(x7r) + cos(xn) + sin(xn)cos(xn) on U = [-I, 11 with a required accuracy 
of E = 0.1. 

Exercise 10.3. Design a fuzzy system to uniformly approximate the function 
g(x) = sin(xln) + cos(x2n) + s in(x~n)cos(x~n)  on U = [-I, 11 x [-I, 11 with a 
required accuracy of E = 0.1. 

Exercise 10.4. Extend the design method in Section 10.2 to n-input fuzzy 
systems. 

Exercise 10.5. Let the function g(x) on U = [O, 113 be given by 

where K = {klkzk3(ki = 0 , l ;  i = 1,2,3 and kl + k2 + kg > 0). Design a fuzzy 
system to uniformly approximate g(x) with a required accuracy of E = 0.05. 

Exercise 10.6. Show that if the fuzzy sets A:, A:, ..., A? in the design pro- 
cedure of Section 10.2 are not complete, then the fuzzy system (10.10) is not well 
defined. If these fuzzy sets are not normal or not consistent, is the fuzzy system 
(10.10) well defined? 

Exercise 10.7. Plot the fuzzy system (10.28) on U = [-I, 11 x [-I, 11 and 
compare it with g(x) = 0.52 +O.lxl + 0 . 2 8 ~ ~  - 0.06x1x2. 



Chapter 11 

Approximation Properties of 
Fuzzy Systems II 

In Chapter 10 we saw that by using the bound in Theorem 10.1 a large number 
of rules are usually required to approximate some simple functions. For example, 
Example 10.2 showed that we need 121 rules to approximate a two-dimensional 
quadratic function. Observing (10.11) we note that the bound is a linear function 
of hi. Since hi are usually small, if a bound could be a linear function of h:, then 
this bound would be much smaller than the bound in (10.11). That is, if we can 
obtain tighter bound than that used in (10.11), we may use less rules to approximate 
the same function with the same accuracy. 

In approximation theory (Powell [1981]), if g(x) is a given function on U and 
Uili2 (il = 1,2, ..., Nl, i2 = 1,2, ..., Nz) is a partition of U as in the proof of Theorem 
10.1, then f (x) is said to be the k1th order accurate approximator for g(x) if I(g - 
f 11, < ~ ~ h "  where M, is a constant that depends on the function g, and h is the 
module of the partition that in our case is max(h1, hz). In this chapter, we first 
design a fuzzy system that is a second-order accurate approximator. 

11.1 Fuzzy Systems with Second-Order Approximation Accuracy 

We first design the fuzzy system in a step-by-step manner and then study its ap- 
proximation accuracy. As in Chapter 10, we consider two-input fuzzy systems for 
notational simplicity; the approach and results are still valid for n-input fuzzy sys- 
tems. The design problem is the same as in Section 10.2. 

Design of Fuzzy System with Second-Order Accuracy: 

. Step 1. Define Ni ( i  = 1,2) fuzzy sets Af , A:, ..., A? in [ai, Pi], which are 
normal, consistent, and complete with the triangular membership functions 



Sec. 11.1. Fuzzy Systems with Second-Order Approximation Accuracy 141 

pa! (x" = pa: ( x i ;  e:-', e:, e:") (11.2) 

for j = 2,3,  ..., Ni - 1, and 

N,-1 N, N .  
PA? ( x i )  = P A ~ i  ( x i ;  ei , ei , ei ) (11.3) 

where i = 1 ,2 ,  and ai = e i  < eT < .. .  < e y  = Pi. Fig. 11.1 shows an 
example with N l  = 4, N2 = 5 ,  al = a2 = 0 and P1 = b2 = 1. 

Figure 11.1. An example of fuzzy sets. 

Steps 2 and 3. The same as Steps 2 and 3 of the design procedure in Section 
10.2. That is, the constructed fuzzy system is given by (10.10), where vjili2 
are given by (10.9) and the A? and A: are given by (11.1)-(11.3). 

Since the fuzzy system designed from the above steps is a special case of the 
fuzzy system designed in Section 10.2, Theorem 10.1 is still valid for this fuzzy 
system. The following theorem gives a stronger result. 

  he or em 11.1. Let f ( x )  be the fuzzy system designed through the above three 
steps. If the g(x) is twice continuously differentiable on U ,  then 
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Nz-1 uiliz Proof: As in the proof of Theorem 10.1, we partition U into U = u?=y1 Uiz=l > . . 
where U2122 = [e?, ell+'] x [e?, e?"]. So, for any x E U, there exists Uili2 such 
that x E Uili2. NOW) suppose x E iYili2, then by the consistency and completeness 
of fuzzy sets A:, A:, ..., A? (i = 1,2),  the fuzzy system can be simplified to (same 
as (10.13)) 

Since pA?"xi) are the special triangular membership functions given by (11.1)- 

(11.3), we have 
(xi) + pA:1+1 (xi) = 1 (11.6) 

for i = 1,2. Hence, 

and the fuzzy system (11.5) is simplified to 

Let C 2 ( ~ i 1 i z )  be the set of all twice continuously differentiable functions on Uili2 
and define linear operators L1 and L2 on C2(Uili2) as follows: 

Since pA31 ($1) and pAJ2 (22) are linear functions in Uili2, they are twice contin- 

uously dikerentiable. gence, g E C2(Uil'2) implies Llg E C2(Ui1'z) and L2g E 
C2 (Uili2). From (11.9) and (11.6) we have 

Combining (11.9) and (11.10) and observing (11.8)) we have 



Sec. 11.1. Fuzzy Systems with Second-Order Approximation Accuracy 143 

Therefore, from (11.11) and (11.12) we obtain 

Since x E Uili2 = [e t  , et+'] x [e? , eFf '1 and using the result in univariate linear 
interpolation (Powell [1981]), we obtain 

Similarly, we have 

Substituting (11.14) and (11.15) into (11.13) and noticing the definition of hi, we 
obtain (11.4). 

From Theorem 11.1 we see that if we choose the particular triangular member- 
ship functions, a second-order accurate approximator can be obtained. We now 
design fuzzy systems to approximate the same functions g(x) in Examples 10.1 and 
10.2 using the new bound (11.4). We will see that we can achieve the same accuracy 
with fewer rules. 

Example 11.1. Same as Example 10.1 except that we now use the bound 
(11.4). Since ~lzll~ = 1, we have from (11.4) that if we choose h = 1, then 

we have 119 - f lloo I < 6. Therefore, we define 7 fuzzy sets Aj in the form of 
(11.1)-(11.3) with eJ = -3 + ( j  - 1) for j  = 1,2, ..., 7. The designed fuzzy system is 

xi=1 sin(ej)pAj (x) 
f (x) = x;=1 PA, (2) 

Comparing (11.16) with (10.23) we see that the number of rules is reduced from 31 
to 7, but the accuracy remains the same. The f (x) of (11.16) is plotted in Fig. 11.2 
against g(x) = sin(x). 

Example 11.2. Same as Example 10.2 except that we now use the bound (11.4). 
Since 3 = 0 (i = 1,2), we know from (1 1.4) that f (x) = g (x) for all z E U .  In 

fact, choosing hi = 2,e: = -1 and e: = 1 for i = 1,2 (that is, Nl = N2 = 2), we 
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Figure 11.2. The designed fuzzy system f(x) of (11.16) 
and the function g(x) = s in (x )  to be approximated. 

obtain the designed fuzzy system as 

where the membership functions are given by (11.1)-(11.3). For this particular case, 
we have for i = 1,2 and x E U that 

g(e: ,  e i )  = g(-1, -1) = 0.08, g(e:, e; )  = g(-1 , l )  = 0.76, g(e?, e i )  = g(1, -1) = 0.4, 
and g(e2, e;) = g(1 , l )  = 0.84. Substituting these results into (11.17), we obtain 

0.08 0.76 0.4 
f ( x )  = [-(I 4 - x1)(1 - 2 2 )  + -(1 4 - x1)(1 + x2) + -(I 4 + x1)(1 - x2) 

0.84 1 1 
++I + x1)(1+ ~ 2 ) 1 / [ ~ ( 1  - x1) (1-  x2) + ; ( l -  .1)(1+ 2 2 )  

1 1 
+-(I + x1)(1 - x,) + q(l  + x1) ( l  + xz)]  

4 
= 0.52 + O.lxl + 0 . 2 8 ~ ~  - 0.06xlx2 (11.20) 
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which is exactly the same as g(x). This confirms our conclusion that f (x) exactly 
reproduces g(x). In Example 10.2 we used 121 rules to construct the fuzzy system, 
whereas in this example we only use 4 rules to achieve zero approximation error. 

To generalize Example 11.2 , we observe from (11.4) that for any function with 

I%I/, = 0, our fuzzy system f (x) designed through the three steps reproduces 
the g(x), that is, f (x) = g(x) for all x E U .  This gives the following corollary of 
Theorem 11.1. 

Corollary 11.1. Let f (x) be the fuzzy system designed through the three steps 
in this section. If the function g(x) is of the following form: 

where ak ,k ,  are constants, then f (x) = g(x) for all x E U .  

ProoE Since % ax, = % ax, = 0 for this class of g(z), the conclusion follows 

immediately from (11.4). 

11.2 Approximation Accuracy of Fuzzy Systems with Maximum 
Defuzzifier 

In Chapter 9 we learned that fuzzy systems with maximum defuzzifier are quite 
different from those with center average defuzzifier. In this section, we study the 
approximation properties of fuzzy systems with maximum defuzzifier. 

Similar to the approach in Sections 11.1 and 10.2, we first design a particular 
fuzzy system and then study its properties. 

Design of Fuzzy System with Maximum Defuzzifier: 

Step 1. Same as Step 1 of the design procedure in Section 11.1. 

Step 2. Same as Step 2 of the design procedure in Section 10.2. 

Step 3. Construct a fuzzy system f (x) from the Nl x N2 rules in the form 
of (10.8) using product inference engine (7.23), singleton fuzzifier (8.1), and 
maximum defuzzifier (8.23). According to Lemma 9.4, this fuzzy system is 

where i;ia is such that 

for all i l  = 1,2, ..., Nl and i2 = 1,2, ..., Nz .  



The following theorem shows that the fuzzy system designed above is a first- 
order accurate approximator of g(x). 

Theorem 11.2. Let f (x) be the fuzzy system (1 1.22) designed from the three 
steps above. If g(x) is continuously differentiable on U = [al, PI] x [az, ,021, then 

I -  Nz-1 uili2 Proof As in the proof of Theorem 11.1, we partition U into U = UilZl Ui2=l , 
where Uili2 = [efl? eFf '1 x [e?, e?+ 'J., We now further partition Uili2 into Uili2 = 
u$: U u"'" U UZQ U u:;", where U:AZ2 = [ey , f (e;' + eF+')] x [e? , i (e? + e?")], 

Ol i l  1 . . ~ 6 ; "  = [el , Z(e: + e;'")] x [f (e? + e?), e:+'], U:AZ2 = [+(e2; + eF+'), eF+l] x 
. . 

[e?, i ( e 2  + e?+l)], and U:iZ2 = [;(e;' + eFS1), e;'+l] x [I(& 2 . 2  + +?+I), eFf '1; see 
Fig. 11.3 for an illustration. So for any x E U, there exist U;iz2 (p, q = 0 OT 1) such 
that x E Ujii2. If x is in the interior of U z ,  then with the help of Fig. 11.3 we see 
that p A i l + p  (21) > 0.5, pA9+* (x2) > 0.5, and all other membership values are less 

than 0.5. Hence, from (11.22) and (11.23) we obtain 

Using the Mean Value Theorem and the fact that x E Uili2, we have 

If x is on the boundary of U;ki2, then with the help of Fig. 11.3 we see that f (x) may 
take any value from a set of at  most the four elements {g(eF, e?), g(e?, e?"), g(eF+l, 
e?), g(e:+', e?")); so (11.26) is still true in this case. Finally, (11.24) follows from 
(11.26). 

From Theorem 11.2 we immediately see that the fuzzy systems with product 
inference engine, singleton fuzzifier, and maximum defuzzifier are universal ap- 
proximators. In fact, by choosing the hl and h2 sufficiently small, we can make 
119 - f 1 loo < 6 for arbitrary E > 0 according to (11.24). 

We now approximate the functions g(x) in Examples 11.1 and 11.2 using the 
fuzzy system (11.22). 

Example 11.3. Same as Example 10.1 except that we use the fuzzy system 
(11.22). Since ~lgll, = 1, we choose h = 0.2 and define 31 fuzzy sets Aj in the 
form of (10.20)-(10.22) (Fig. 10.4). Let e j  = -3 + 0.2(j - l ) ,  then the fuzzy system 
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Figure 11.3. An example of partition of uili2 into sub- 
sets. 

( 1  1.22) becomes 

which is plotted in Fig. 11.4. 

Example 11.4. Same as Example 10.2 except that we use the fuzzy system 
(11.22). As in Example 10.2, we choose hl = h2 = 0.2 and define 11 fuzzy sets 
Aj on [-I ,  11 given by (10.24)-(10.26). We construct the fuzzy system using the 
121 rules in the form of (10.27). For this example, ej = -1 + 0.2(j - 1) ( j  = 
1,2 ,  ..., 11) and Uili2 = [eil, e i ~ + l ~  [eil, e i~+l  ] ( i l , i 2  = 1,2 ,..., 10). As shown 
in Fig. 11.3, we further decompose Uhi2 into Uili2 = u1 (J1 Uiliz where 

. . . . p=p q=O Pq ' 
Uih" = [e?, f (e? + e?+l)] x [e:, f (e: + e:+')], Ui;'2 = [e;li t ( eF  + e?+')] x 
[ f ( , $  + ,iz) ."+I], u!dz = [ f  (e$ + eF+l 

. . 
2 7 2  ) , x [e: , f (e$ + eF'l)], and U:;'2 = 

[3(e41 +.?'I), e?"] x [$(eF +eF+'), e$+l]. Then the fuzzy system (11.22) becomes 

which is computed through the following two steps: (i) for given x E U ,  determine 
il , i2, p, q such that z E U;ii2, and (ii) the f ( x )  equals g(eil+p, ei2+q). 
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Figure 11.4. The designed fuzzy system (11.22) and the 
function g ( x )  = sin(x) to be approximated in Example 
11.3. 

In Section 11.1 we showed that the fuzzy systems with center average defuzzi- 
fier are second-order accurate approximators. Theorem 11.2 shows that the fuzzy 
systems with maximum defuzzifier are first-order accurate approximators. So it is 
natural to ask whether they are second-order accurate approximators also? The 
following example shows, unfortunately, that they cannot be second-order accurate 
approximators. 

Example 11.5. Let g ( x )  = x on U = [O, 11 and ,UA" ( x )  = ,UAZ ( x ;  ei-l, e2 ,  ei+' 1, 
where e0 = 0, eN+l = 1, ei = a, N-1 i = 1,2,  ..., N ,  and N can be any positive integer. 
So, in this case we have N rules and h = &. Let U Z  = [ei, e2+'] (i = 1 ,2 ,  .. . , N - 1) 
and f ( x )  be the fuzzy system (11.22). If x E Ui, then 

1 .  1 
ma? / g ( x )  - f (x)l  = max x - g(ei)  or g(ei++' = -(e2+' - e') = - h  (11.29) 
x E U  x€[ei ,ei+l] 2 2 

Since h(= &) 2 h2 for any positive integer N, the fuzzy system (11.22) can- 
not approximate the simple function g ( x )  = x to second-order accuracy. Because 
of this counter-example, we conclude that fuzzy systems with maximum defuzzifier 
cannot be second-order accurate approximators. Therefore, fuzzy systems with cen- 
ter average defuzzifier are better approximators than fuzzy systems with maximum 
defuzzifier . 
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11.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Using the second-order bound (11.4) to design fuzzy systems with required 
accuracy. 

Designing fuzzy systems with maximum defuzzifier to approximate functions 
with required accuracy. 

The ideas of proving the second-order bound for fuzzy systems with center 
average defuzzifier (Theorem 11.1) and the first-order bound for fuzzy systems 
with maximum defuzzifier (Theorem 11.2). 

Again, very few references are available on the topic of this chapter. The most 
relevant papers are Ying [I9941 and Zeng and Singh [1995]. 

11.4 Exercises 

Exercise 11.1. Use the first-order bound (10.11) and the second-order bound 
(11.4) to design two fuzzy systems with center average defuzzifier to uniformly 

1 approximate the function g(x1, x2) = on U = [-I, 11 x [-I, 11 to the 
accuracy of E = 0.1. Plot the designed fuzzy systems and compare them. 

Exercise 11.2. Repeat Exercise 11.1 with g(xi, x2) = l+ri+xi. 

Exercise 11.3. Design a fuzzy system with maximum defuzzifier to uniformly 
approximate the g(xl, x2) in Exercise 11.1 on the same U to the accuracy of E = 0.1. 
Plot the designed fuzzy system. 

Exercise 11.4. Repeat Exercise 11.3 with the g(xl, 22) in Exercise 11.2. 

Exercise 11.5. Generalize the design procedure in Section 11.1 to n-input fuzzy 
systems and prove that the designed fuzzy system f (x) satisfies 

Exercise 11.6. Verify graphically that (11.29) is true. 
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Part I I I 

Design of Fuzzy Systems from 
Input-Output Data 

Fuzzy systems are used to formulate human knowledge. Therefore, an important 
question is: What forms does human knowledge usually take? Roughly speaking, 
human knowledge about a particular engineering problem may be classified into 
two categories: conscious knowledge and subconscious knowledge. By conscious 
knowledge we mean the knowledge that can be explicitly expressed in words, and by 
subconscious knowledge we refer to the situations where the human experts know 
what to do but cannot express exactly in words how to do it. For example, the ex- 
perienced truck drivers know how to drive the truck in very difficult situations (they 
have subconscious knowledge), but it is difficult for them to express their actions 
in precise words. Even if they can express the actions in words, the description is 
usually incomplete and insufficient for accomplishing the task. 

For conscious knowledge, we can simply ask the human experts to express it in 
terms of fuzzy IF-THEN rules and put them into fuzzy systems. For subconscious 
knowledge, what we can do is to ask the human experts to demonstrate, that is, to 
show what they do in some typical situations. When the expert is demonstrating, 
we view him/her as a black box and measure the inputs and the outputs; that is, we 
can collect a set of input-output data pairs. In this way, the subconscious knowledge 
is transformed into a set of input-output pairs; see Fig. 12.1. Therefore, a problem 
of fundamental importance is to construct fuzzy systems from input-output pairs. 
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Expert knowledge . 1 

Subconscious knowledg 

box and measure its inputs 

Input-output pairs \ c 
Fuzzy systems 

Figure 12.1. Converting expert knowledge into fuzzy systems. 

In this part (Chapters 12-15), we will develop a number of methods for construct- 
ing fuzzy systems from input-output pairs. Because in many practical situations 
we are only provided with a limited number of input-output pairs and cannot ob- 
tain the outputs for arbitrary inputs, the design methods in Chapters 10 and 11 
are not applicable (recall that the methods in Chapters 10 and 11 require that we 
can determine the output g(x) for arbitrary input x E U). That is, we are now 
considering the third case discussed in the beginning of Chapter 10. Our task is to 
design a fuzzy system that characterizes the input-output behavior represented by 
the input-output pairs. 

In Chapter 12, we will develop a simple heuristic method for designing fuzzy 
systems from input-output pairs and apply the method to the truck backer-upper 
control and time series prediction problems. In Chapter 13, we will design the 
fuzzy system by first specifying its structure and then adjusting its parameters 
using a gradient descent training algorithm; we will use the designed fuzzy systems 
to identify nonlinear dynamic systems. In Chapter 14, the recursive least squares 
algorithm will be used to design the parameters of the fuzzy system and the designed 
fuzzy system will be used as an equalizer for nonlinear communication channels. 
Finally, Chapter 15 will show how to use clustering ideas to design fuzzy systems. 



Chapter 12 

Design of Fuzzy Systems Using 
A Table Look-Up Scheme 

12.1 A Table Look-Up Scheme for Designing Fuzzy Systems from 
Input-Output Pairs 

Suppose that we are given the following input-output pairs: 

where x: E U = [al, PI] x . . . x [a,, Pn] c Rn and y; E V = [ay, ,By] c R. Our 
objective is to design a fuzzy system f (x) based on these N input-output pairs. 
We now propose the following five step table look-up scheme to design the fuzzy 
system: 

Step 1. Define fuzzy sets to cover the input and output spaces. 

Specifically, for each [ai, Pi], i = 1,2, ..., n, define Ni fuzzy sets A: ( j  = 1,2, ..., Ni), 
which are required to be complete in [ai, Pi]; that is, for any xi E [ai, Pi], there 
exists A: such that pA;(xi) # 0. For example, we may choose pA; (s) to  be 

the pseudo-trapezoid membership functions: pA; (xi) = pA; (xi; a:, b:, 4, d!) , where 

af = bl 2 = a 2 , ~  c? = af" 2 < b:+l = d: ( j  = 1,2, ..., Ni - I) ,  and dd2N; = pi. Sim- 
ilarly, define Ny fuzzy sets B j ,  j = 1,2, ..., N,, which are complete in [ay,  Py]. 
We also may choose pBj,(y) to be the pseudo-trapezoid membership functions: 
pgi(y) = pgj (y ;a j ,b j ,d ,d j ) ,  whereal  = b1 = a,,d = aj+l < bj+l = dj  
( j  = 1,2,  ..., Ny - I ) ,  and cNy = dNy = Py . Fig.12.2 shows an example for the 
n = 2 case, where Nl = 5, N2 = 7, Ny = 5, and the membership functions are all 
triangular. 

Step 2. Generate one rule from one input-output pair. 

First, for each input-output pair (xil, ..., xi,; y;), determine the membership 
values of xgi (i = 1,2, ..., n) in fuzzy sets A: ( j  = 1,2, ..., Ni) and the membership 
values of y; in fuzzy sets B' ( I  = 1,2, ..., N,).  That is, compute the following: 
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Figure 12.2. An example of membership functions and input-output pairs 
for the two-input case. 

pAi (xEi) for j = 1,2, ..., Ni, i = 1,2, ..., n ,  and pBt (yi) for I = 1,2, ..., Ny. For the 

example in Fig. 12.2, we have approximately that: xA1 has membership value 0.8 
in B1, 0.2 in B2, and zero in other fuzzy sets; xA2 has membership value 0.6 in S1, 
0.4 in S2, and zero in other fuzzy sets; and, yA has membership value 0.8 in CE, 0.2 
in B1, and zero in other fuzzy sets. 

Then, for each input variable xi (i = 1,2, ..., n), determine the fuzzy set in which 
xpi has the largest membership value, that is, determine A:* such that pAi. (x&) 2 
pa: (x&) for j = 1,2, ..., Ni. Similarly, determine Bz* such that p ~ t .  (y:) 2 pBi(y:) 

for 1 = 1,2, ..., Ny.  For the example in Fig. 12.2, the input-output pair (xAl, xkzi YA) 
gives A(* = B1, A;* = S1 and B'* = CE, and the pair (xi,, xi,; yg) gives A;* = 
B~,A;* = CE and B'* = B1. 

Finally, obtain a fuzzy IF-THEN rule as 

IF XI i s  A!* and . . - and x, i s  A?, THEN y i s  B'* (12.2) 

For the example in Fig. 12.2, the pair (xA1, xA2; gives the rule: IF x l  i s  B 1  
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and 2 2  i s  5'1, T H E N  y i s  CE; and the pair (xi,, xi2; y:) gives the rule: IF xl 
i s  B1 and 2 2  i s  CE,  T H E N  y i s  B1. 

Step 3. Assign a degree to each rule generated in Step 2. 

Since the number of input-output pairs is usually large and with each pair gen- 
erating one rule, it is highly likely that there are conflicting rules, that is, rules with 
the same IF parts but different THEN parts. To resolve this conflict, we assign a 
degree to each generated rule in Step 2 and keep only one rule from a conflicting 
group that has the maximum degree. In this way not only is the conflict problem 
resolved, but also the number of rules is greatly reduced. 

The degree of a rule is defined as follows: suppose that the rule (12.2) is gener- 
ated from the input-output pair (xg; y;), then its degree is defined as 

For the example in Fig. 12.2, the rule generated by (xh,, xi,; y:) has degree 

and the rule generated by (xi,, xi,; y:) has degree 

If the input-output pairs have different reliability and we can determine a number 
to assess it, we may incorporate this information into the degrees of the rules. 
Specifically, suppose the input-output pair (xg; y:) has reliable degree p p  (E [0, I]), 
then the degree of the rule generated by (x:; y;) is redefined as 

In practice, we may ask an expert to check the data (if the number of input-output 
pairs is small) and estimate the degree p P .  Or, if we know the characteristics of 
the noise in the data pair, we may choose pP to reflect the strength of the noise. 
If we cannot tell the difference among the input-output pairs, we simply choose all 
pP = 1 SO that (12.6) reduces to (12.3). 

Step 4. Create the fuzzy rule base. 

The fuzzy rule base consists of the following three sets of rules: 

The rules generated in Step 2 that do not conflict with any other rules. 
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The rule from a conflicting group that has the maximum degree, where a 
group of conflicting rules consists of rules with the same IF parts. 

Linguistic rules from human experts (due to conscious knowledge). 

Since the first two sets of rules are obtained from subconscious knowledge, the final 
fuzzy rule base combines both conscious and subconscious knowledge. 

Intuitively, we can illustrate a fuzzy rule base as a look-up table in the two- 
input case. For example, Fig. 12.3 demonstrates a table-lookup representation of 
the fuzzy rule base corresponding to the fuzzy sets in Fig. 12.2. Each box represents 
a combination of fuzzy sets in [a1 , @I] and fuzzy sets in [az, and thus a possible 
rule. A conflicting group consists of rules in the same box. This method can be 
viewed as filling up the boxes with appropriate rules; this is why we call this method 
a table look-up scheme. 

Figure 12.3. Table look-up illustration of the fuzzy rule base. 

Step 5. Construct the fuzzy system based on the fuzzy rule base. 

We can use any scheme in Chapter 9 to construct the fuzzy system based on the 
fuzzy rule base created in Step 4. For example, we may choose fuzzy systems with 
product inference engine, singleton fuzzifier, and center average defuzzifier (Lemma 
9.1). 
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We now make a few remarks on this five step procedure of designing the fuzzy 
system from the input-output pairs. 

A fundamental difference between this method and the methods in Chapters 
10 and 11 is that the methods in Chapters 10 and 11 require that we are 
able to determine the exact output g(x)  for any input x E U ,  whereas in this 
method we cannot freely choose the input points in the given input-output 
pairs. Also, in order to design a fuzzy system with the required accuracy, 
the methods in Chapters 10 and 11 need to know the bounds of the first 
or second order derivatives of the function to be approximated, whereas this 
method does not require this information. 

If the input-output pairs happen to be the ( e t  , e?; giliz) in (10.9), then it is 
easy to verify that the fuzzy system designed through these five steps is the 
same fuzzy system as designed in Section 10.2. Therefore, this method can 
be viewed as a generalization of the design method in Section 10.2 to the case 
where the input-output pairs cannot be arbitrarily chosen. 

a The number of rules in the final fuzzy rule base is bounded by two numbers: 
N ,  the number of input-output pairs, and n:="=,i, the number of all possible 
combinations of the fuzzy sets defined for the input variables. If the dimension 
of the input space n is large, n:=l Ni will be a huge number and may be 
larger than N .  Also, some input-output pairs may correspond to the same 
box in Fig. 12.3 and thus can contribute only one rule to the fuzzy rule base. 
Therefore, the number of rules in the fuzzy rule base may be much less than 
both n:=, Ni and N. Consequently, the fuzzy rule base generated by this 
method may not be complete. To make the fuzzy rule base complete, we may 
fill the empty boxes in the fuzzy rule base by interpolating the existing 
rules; we leave the details to the reader to think about. 

Next, we apply this method to a control problem and a time series prediction 
problem. 

12.2 Application to Truck Backer-Upper Control 

Backing up a truck to a loading dock is a nonlinear control problem. Using conven- 
tional control approach, we can first develop a mathematical model of the system 
and then design a controller based on nonlinear control theory (Walsh, Tilbury, 
Sastry, Murray, and Laumond [1994]). Another approach is to design a controller 
to emulate the human driver. We adapt the second approach. Assume that an 
experienced human driver is available and we can measure the truck's states and 
the corresponding control action of the human driver while he/she is backing the 
truck to the dock; that is, we can collect a set of input-output (state-control) pairs. 
We will design a fuzzy system based on these input-output pairs using the table 
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look-up scheme in the last section, and replace the human driver by the designed 
fuzzy system. 

The simulated truck and loading zone are shown in Fig. 12.4. The truck position 
is determined by three state variables 4, x and y, where $ is the angle of the truck 
with respect to the horizontal line as shown in Fig. 12.4. Control to the truck is 
the steeling angle 8. Only backing up is permitted. The truck moves backward 
by a fixed unit distance every stage. For simplicity, we assume enough clearance 
between the truck and the loading dock such that y does not have to be considered as 
a state variable. The task is to design a controller whose inputs are (x, $) and whose 
output is 0, such that the final state will be (xf ,  $f) = (10,90°). We assume that 
x E [O, 20],$ E [-90°, 270°] and 0 E [-40°, 40°]; that is, U = [O, 201 x [-90°, 270°] 
and V = [-40°, 40°]. 

x=o x=20 

Figure 12.4. The simulated truck and loading zone. 

First, we generate the input-output pairs (xp, q5p; 8p). We do this by trial and 
error: at every stage (given x and 4) starting from an initial state, we determine 
a control f3 based on common sense (that is, our own experience of how to con- 
trol the steering angle in the situation); after some trials, we choose the input- 
output pairs corresponding to the smoothest successful trajectory. The following 
14 initial states were used to generate the desired input-output pairs: (xo, 4:) = 
(1,0), (1,90), (1,270); (7,0), (7,901, (7,1801, (7,270); (13,0), (13, 901, (13,180), (13,270); 
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(19, go), (19,180), (19,270). Table 12.1 shows the input-output pairs starting from 
the initial state (xo, q50) = (l,OO). The input-output pairs starting from the other 
13 initial states can be obtained in a similar manner. Totally, we have about 250 
input-output pairs. We now design a fuzzy system based on these input-output 
pairs using the table look-up scheme developed in the last section. 

Table 12.1. Ideal trajectory (xt ,@) and the correspond- 
ing control 0: starting from (xo, 40) = (1, OO). 

In Step 1, we define 7 fuzzy sets in [-90°,2700], 5 fuzzy sets in [0,20] and 7 
fuzzy sets in [-40°, 40'1, where the membership functions are shown in Fig.12.5. In 
Steps 2 and 3, we generate one rule from one input-output pair and compute the 
corresponding degrees of the rules. Table 12.2 shows the rules and their degrees 
generated by the corresponding input-output pairs in Table 12.1. The final fuzzy 
rule base generated in Step 4 is shown in Fig.12.6 (we see that some boxes are 
empty, so the input-output pairs do not cover all the state space; however, we will 
see that the rules in Fig. 12.6 are sufficient for controlling the truck to the desired 
position starting from a wide range of initial positions). Finally, in Step 5 we use the 

ifuzzy system with product inference engine, singleton fuzzifier, and center average 
defuzzifier; that is, the designed fuzzy system is in the form of (9.1) with the rules 
in Fig. 12.6. 

We now use the fuzzy system designed above as a controller for the truck. To 
simulate the control system, we need a mathematical model of the truck. We use 
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Figure 12.5. Membership functions for the truck backer-upper control problem. 

Figure 12.6. The final fuzzy rule base for the truck backer-upper 
control problem. 
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Table 12.2. Fuzzy IF-THEN rules generated from the 
input-output pairs in Table 12.1 and their degrees. 

the following approximate model (Wang and Mendel [1992b]): 

x is  4 is  
S2 S2 
S2 S2 
S2 S2 
S2 S2 
S2 S2 
S1 S2 
S1 S1 
S1 S1 
S1 S1 
S1 S1 
CE S1 
CE S1 
CE S1 
CE CE 
CE CE 
CE CE 
CE CE 
CE CE 

x ( t  + 1) = x ( t )  + cos[$(t) + O(t)] + sin[O(t)]sin[$(t)] (12.7) 

y (t + 1) = y ( t )  + sin[$(t) + e(t)] - sin[O(t)]cos[$(t)] (12.8) 

where b is the length of the truck and we assume b = 4 in our simulations. Fig. 
12.7 shows the truck trajectory using the designed fuzzy system as the controller 
for two initial conditions: ( g o ,  $o) = (3,  -30°) and (13,30°). We see that the fuzzy 
controller can successfully control the truck to the desired position. 

0 is  
S2 
S2 
S2 
S2 
S2 
S1 
S1 
S1 
S1 
S1 
S1 
S1 
CE 
CE 
CE 
CE 
CE 
CE 

12.3 Application to Time Series Prediction 

degree 
1.00 
0.92 
0.35 
0.12 
0.07 
0.08 
0.18 
0.53 
0.56 
0.60 
0.35 
0.21 
0.16 
0.32 
0.45 
0.54 
0.88 
0.92 

Time series prediction is an important practical problem. Applications of time series 
prediction can be found in the areas of economic and business planning, inventory 
and production control, weather forecasting, signal processing, control, and many 
other fields. In this section, we use the fuzzy system designed by the table look-up 
scheme to predict the Mackey-Glass chaotic time series that is generated by the 
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0 10 20 

Figure 12.7. Truck trajectories using the fuzzy controller. 

following delay differential equation: 

When r > 17, (12.10) shows chaotic behavior. We choose r = 30. 

Let x(k) (k = 1,2,3, ...) be the time series generated by (12.10) (sampling the 
continuous curve x(t) generated by (12.10) with an interval of 1 sec.). Fig.12.8 
shows 600 points of x(k). The problem of time series prediction can be formulated 
as follows: given x(k - n + I),  x(k - n + 2), ..., x(k), estimate x(k + I), where n is a 
positive integer. That is, the task is to determine a mapping from [x(k-n+l), x(k- 
n +2), ..., x(k)] E Rn to [x(k+ I)] E R, and this mapping in our case is the designed 
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fuzzy system based on the input-output pairs. Assuming that x ( l ) , x ( 2 ) ,  ..., x ( k )  
are given with k  > n, we can form Ic - n input-output pairs as follows: 

[x (k  - n),  ..., x ( k  - 1 ) ;  x ( k ) ]  

[ x ( k  - n - I ) ,  ..., x ( k  - 2) ;  x ( k  - I ) ]  

... (12.11) 

[ x ( l ) ,  -.., x ( n ) ;  x ( n  + 111 

These input-output pairs are used to design a fuzzy system f ( x )  using the table 
lookup scheme in Section 12.2, and this f ( x )  is then used to predict x ( k  + 1 )  for 
1 = 1 ,2 ,  ..., where the input to f ( x )  is [ x ( k  - n + 1 ) ,  ..., x ( k  - 1 + l ) ]  when predicting 
x ( k  + 1 ) .  

Figure 12.8. A section of the Mackey-Glass chaotic time 
series. 

We now use the first 300 points in Fig. 12.8 to construct the input-output pairs 
and the designed fuzzy system is then used to predict the remaining 300 points. 
We consider two cases: (i) n = 4 and the 7 fuzzy sets in Fig.12.9 are defined for 
each input variable, and (ii) n = 4 and the 15 fuzzy sets in Fig.12.10 are used. The 
prediction results for these two cases are shown in Figs.12.11 and 12.12, respectively. 
Comparing Figs. 12.11 and 12.12, we see that the prediction accuracy is improved 
by defining more fuzzy sets for each input variable. 
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Figure 12.9. The first choice of membership functions for each 
input variable. 

Figure 12.10. The second choice of membership functions for each 
input variable. 
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Figure 12.11. Prediction and the true values of the time 
series using the membership functions in Fig. 12.9. 

Figure 12.12. Prediction and the true values of the time 
series using the membership functions in Fig. 12.10. 
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12.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The details of the table look-up method for designing fuzzy systems from 
input-output pairs. 

How to apply the method to the truck backer-upper control and the time 
series prediction problems. 

How to combine conscious and subconscious knowledge into fuzzy systems 
using this table look-up scheme. 

This table look-up scheme is taken from Wang and Mendel [1992b] and Wang 
[1994], which discussed more details about this method and gave more examples. 
Application of the method to financial data prediction can be found in Cox [1994]. 

12.5 Exercises and Projects 

Exercise 12.1. Consider the design of a 2-input-1-output fuzzy system using 
the table look-up scheme. Suppose that in Step 1 we define the fuzzy sets as shown 
in Fig. 12.2, where a1 = a2 = a, = 0 and PI = P2 = P, = 1, and the membership 
functions are triangular and equally spaced. 

(a) What is the minimum number of input-output pairs such that every fuzzy 
sets in Fig. 12.2 will appear at  least once in the generated rules? Give an example 
of this minimum set of input-output pairs. 

(b) What is the minimum number of input-output pairs such that the generated 
fuzzy rule base is complete? Give an example of this minimum set of input-output 
pairs. 

Exercise 12.2. Consider the truck backer-upper control problem in Section 
12.3. 

(a) Generate a set of input-output pairs by driving the truck from the initial 
state (ao, do) = (1, 90°) to the final state (xf ,  4 f )  = (10,90°) using common sense. 

(b) Use the table look-up scheme to create a fuzzy rule base from the input- 
output pairs generated in (a), where the membership functions in Step 1 are given 
in Fig. 12.5. 

(c) Construct a fuzzy system based on the fuzzy rule base in (b) and use it to 
control the truck from ( x o , 4 ~ )  = (0,90°) and ( x o , 4 ~ )  = (-3,90°). Comment on 
the simulation results. 

Exercise 12.3. Let f (x) be the fuzzy system designed using the table look-up 
scheme. Can you determine an error bound for I f  (xg) - ygl? Explain your answer. 
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Exercise 12.4. Propose a method to fill up the empty boxes in the fuzzy 
rule base generated by the table look-up scheme. Justify your method and test it 
through examples. 

Exercise 12.5. We are given 10 points x(1), x(2), ..., x(10) of a time series and 
we want to predict x(12). 

(a) If we use the fuzzy system f [x(10), x(8)] to predict x(12), list all the input- 
output pairs for constructing this fuzzy system. 

(b) If we use the fuzzy system f [%(lo), x(9), x(8)] to predict x(12), list all the 
input-output pairs for constructing this fuzzy system. 

12.6 (Project). Write a computer program to implement the table look-up 
scheme and apply your program to the time series prediction problem in Section 
12.4. To make your codes generally applicable, you may have to include a method 
to fill up the empty boxes. 



Chapter 13 

Design of Fuzzy Systems Using 
Gradient Descent Training 

13.1 Choosing the Structure of Fuzzy Systems 

In the table look-up scheme of Chapter 12, the membership functions are fixed in 
the first step and do not depend on the input-output pairs; that is, the membership 
functions are not optimized according to the input-output pairs. In this chapter, 
we propose another approach to designing fuzzy systems where the membership 
functions are chosen in such a way that certain criterion is optimized. 

From a conceptual point of view, the design of fuzzy systems from input-output 
pairs may be classified into two types of approaches. In the first approach, f ~ z z y  
IF-THEN rules are first generated from input-output pairs, and the fuzzy system 
is then constructed from these rules according to certain choices of fuzzy inference 
engine, fuzzifier, and defuzzifier. The table look-up scheme of Chapter 12 belongs 
to this approach. In the second approach, the structure of the fuzzy system is 
specified first and some parameters in the structure are free to change, then these 
free parameters are determined according to the input-output pairs. In this chapter, 
we adapt this second approach. 

First, we specify the structure of the fuzzy system to be designed. Here we 
choose the fuzzy system with product inference engine, singleton fuzzifier, center 
average defuzzifier, and Gaussian membership function, given by (9.6). That is, we 
assume that the fuzzy system we are going to design is of the following form: 

where M is fixed, and jjl, 3: and of are free parameters (we choose af = 1). Although 
the structure of the fuzzy system is chosen as (13.1), the fuzzy system has not been 
designed because the parameters jj" , ~ f  and uf are not specified. Once we specify the 
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parameters jjl,%f and c:, we obtain the designed fuzzy system; that is, designing 
the fuzzy system is now equivalent to determining the parameters yl, %: and a:. 

To determine these parameters in some optimal fashion, it is helpful to represent 
the fuzzy system f (x) of (13.1) as a feedforward network. Specifically, the mapping 
from the input x E U C Rn to the output f(x) E V c R can be implemented 
according to the following operations: first, the input x is passed through a product 

n a: -z" Gaussian operator to become zz = n,=, e ~ ~ ( - ( + ) ~ ) ;  then, the z1 are passed 
*% 

through a summation operator and a weighted summation operator to obtain b = zIVfl zz and a = xKl &"l; finally, the output of the fuzzy system is computed 
as f (x) = a/b.  This three-stage operation is shown in Fig. 13.1 as a three-layer 
feedforward network. 

Figure 13.1. Network representation of the fuzzy system. 

13.2 Designing the Parameters by Gradient Descent 

As in Chapter 12, the data we have are the input-output pairs given by (12.1). Our 
task is to design a fuzzy system f (x) in the form of (13.1) such that the matching 
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error 
1 

ep = -[f(xg) - y;I2 
2 

is minimized. That is, the task is to determine the parameters yl, 2: and 0; such 
that ep of (13.2) is minimized. In the sequel, we use e, f and y to denote ep, f (xz) 
and y;, respectively. 

We use the gradient descent algorithm to determine the parameters. Specifically, 
to  determine yl, we use the algorithm 

where I = 1,2, ..., M ,  q = 0,1,2, ..., and a is a constant stepsize. If yYq) converges 
as q goes to infinity, then from (13.3) we have 3 = 0 at  the converged g" which 
means that the converged jjl is a local minimum of e. From Fig. 13.1 we see that 
f (and hence e) depends on y1 only through a,  where f = alb, a = ~ E , ( j j l z ' ) ,  

b = cE, zl, and z1 = JJy="=,xp(- hence, using the Chain Rule, we have 

Substituting (13.4) into (13.3), we obtain the training algorithm for gl: 

where 1 = 1,2, ..., M ,  and q = 0,1,2, .... 
To determine P:, we use 

where i = 1 ,2  ,..., n,l = 1 ,2  ,..., M, and q = 0,1,2 ,.... We see from Fig. 13.1 that f 
(and hence e) depends on 2: only through zl; hence, using the Chain Rule, we have 

Substituting (13.7) into (13.6), we obtain the training algorithm for 2;: 
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Using the same procedure, we obtain the training algorithm for af : 

1 1 de oi(q + 1) = ai(q) - a-1 
daf 

The training algorithm (13.5), (13.8), and (13.9) performs an error back-propagation 
procedure. To train jjl, the "normalized" error (f - y)/b is back-propagated to the 
layer of jjl; then jjl is updated using (13.5) in which z1 is the input to jjZ (see Fig. 
13.1). To train 3f and a:, the "normalized" error (f - y)/b times (jjl - f )  and z1 is 
back-propagated to the processing unit of Layer 1 whose output is zl; then 3: and af 
are updated using (13.8) and (13.9), respectively, in which the remaining variables 
z:, x;,, and of (that is, the variables on the right-hand sides of (13.8) and (13.9), 
except the back-propagated error F ( j j z  - f)zl) can be obtained locally. Therefore, 
this algorithm is also called the error back-propagation training algorithm. 

We now summarize this design method. 

Design of Fuzzy Systems Using Gradient Descent Training: 

Step 1. Structure determination and initial parameter setting. Choose 
the fuzzy system in the form of (13.1) and determine the M. Larger M results 
in more parameters and more computation, but gives better approximation 
accuracy. Specify the initial parameters jjl(0), zf(0) and af(0). These initial 
parameters may be determined according to the linguistic rules from human 
experts, or be chosen in such a way that the corresponding membership func- 
tions uniformly cover the input and output spaces. For particular applications, 
we may use special methods; see Section 13.3 for an example. 

Step 2. Present input and calculate the output of the fuzzy system. 
For a given input-output pair (x:; y:), p = 1,2, ..., and at the q'th stage of 
training, q = 0,1,2, ..., present x: to the input layer of the fuzzy system in 
Fig. 13.1 and compute the outputs of Layers 1-3. That is, compute 
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Step 3. Update the parameters. Use the training algorithm (13.5), (13.8) 
and (13.9) to compute the updated parameters yl(q+l), 2: (q+l) and of(q+l), 
where y = y:, and zz, b, a and f equal those computed in Step 2. 

0 Step 4. Repeat by going to Step 2 with q = q + 1, until the error If - y:l is 
less than a prespecified number E ,  or until the q equals a prespecified number. 

Step 5. Repeat by going to Step 2 with p = p + 1; that is, update the 
paramters using the next input-output pair ($$I; y:S1). 

Step 6. If desirable and feasible, set p = 1 and do Steps 2-5 again until 
the designed fuzzy system is satisfactory. For on-line control and dynamic 
system identification, this step is not feasible because the input-output pairs 
are provided one-by-one in a real-time fashion. For pattern recognition prob- 
lems where the input-output pairs are provided off-line, this step is usually 
desirable. 

Because the training algorithm (13.5), (13.8) and (13.9) is a gradient descent 
algorithm, the choice of the initial parameters is crucial to the success of the algo- 
rithm. If the initial parameters are close to the optimal parameters, the algorithm 
has a good chance to converge to the optimal solution; otherwise, the algorithm 
may converge to a nonoptimal solution or even diverge. The advantage of using 
the fuzzy system is that the parameters yZ, 31 and crf have clear physical meanings 
and we have methods to choose good initial values for them. Keep in mind that 
the parameters yZ are the centers of the fuzzy sets in the THEN parts of the rules, 
and the parameters 2: and crf are the centers and widths of the Gaussian fuzzy 
sets in the IF parts of the rules. Therefore, given a designed fuzzy system in the 
form of (13.1), we can recover the fuzzy IF-THEN rules that constitute the fuzzy 
system. These recovered fuzzy IF-THEN rules may help to explain the designed 
fuzzy system in a user-friendly manner. 

Next, we apply this method to the problem of nonlinear dynamic system iden- 
tification. 

13.3 Application to Nonlinear Dynamic System Identification 

13.3.1 Design of the Identifier 

System identification is a process of determining an appropriate model for the sys- 
tem based on measurements from sensors. It is an important process because many 
approaches in engineering depend on the model of the system. Because the fuzzy 
systems are powerful universal approximators, it is reasonable to use them as iden- 
tification models for nonlinear systems. In this section, we use the fuzzy system 
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(13.1) equipped with the training algorithm (13.5), (13.8) and (13.9) to approximate 
unknown nonlinear components in dynamic systems. 

Consider the discrete time nonlinear dynamic system 

where f is an unknown function we want to identify, u and y are the input and 
output of the system, respectively, and n and m are positive integers. Our task is 
to identify the unknown function f based on fuzzy systems. 

Let f(x) be the fuzzy system in the form of (13.1). We replace the f (x) in 
(13.14) by f(x) and obtain the following identification model: 

Our task is to adjust the parameters in f(x) such that the output of the identification 
model y(k + 1) converges to the output of the true system y(k + 1) as k goes to 
infinity. Fig. 13.2 shows this identification scheme. 

b Y 
plant f * 

u 
-w 

Figure 13.2. Basic scheme of identification model for the 
nonlinear dynamic system using the fuzzy system. 

The input-output pairs in this problem are (x$+'; yt+'), where xi+' = (y(k), ..., 
y(k - n + 1); u(k), ..., u(k - m f I)) ,  y:+' = y(k + l ) ,  and k = 0,1,2, .... Because 
the system is dynamic, these input-output pairs are collected one at  a time. The 
operation of the identification process is the same as the Steps 1-5 in Section 13.2. 
Note that the p there is the k in (13.14) and (13.15) and the n in (13.1) equals 
n+m. 
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13.3.2 Initial Parameter Choosing 

As we discussed in Section 13.2, a good initial f is crucial for the success of the ap- 
proach. For this particular identification problem, we propose the following method 
for on-line initial parameter choosing and provide a theoretical justification (Lemma 
13.1) to explain why this is a good method. 

An on-line initial parameter choosing method: Collect the input-output 
pairs (x;+'; y;+') = (y(k), ..., y(k - n + l ) ,u(k) ,  ..., u(k - m + 1); y(k + 1)) for the 
first M time points k = 0,1, ..., M - 1, and do not start the training algorithm until 
k = M-1 (that is, set q = k- M in (13.5), (13.8) and (13.9)). The initial parameters 
are chosen as: yl(0) = y;, %1(0) = xii, and af (0) equals small numbers (see Lemma 
13.1)oraf(0) = [max(xki : l  = 1,2 ,..., M)-min(xbi : 1 = 1,2 ,..., M)]/M,wherel = 
1,2, ..., M and i = 1,2, ..., n + m. The second choice of of(0) makes the membership 
functions uniformly cover the range of xk, from 1 = 1 to 1 = M. 

We now show that by choosing the af(0) sufficiently small, the fuzzy system 
with the preceding initial parameters can match all the M input-output pairs 
(x;+'; y:+'), k = 0,1, ..., M - 1, to arbitrary accuracy. 

Lemma 13.1. For arbitrary E > 0, there exists a* > 0 such that the fuzzy 
system f(x)  of (13.1) with the preceding initial parameters g1 and %$ and af = a"  
has the property that 

[f(x;+l) - y:+ll < E (13.16) 

f o r k = 0 , 1 ,  ..., M - 1 .  

Proof: Substituting the initial parameters gl(0) and %1(0) into (13.1) and setting 
5; = 5*, we have 

Setting x = x;+' in (13.17) and noticing 1 5 L + 1 5 M ,  we have 

Hence, 
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x ~ + ~ - - x ; ~  2 
1f x$ # $2 for l1 # 12, then we have fly=+," exp(-( "' g, ) ) + Oasa* + Oforl # 
k+ 1. Therefore, by choosing a* sufficiently small, we can make lf(x,k+') - Yi+l 1 < 6 .  

Similarly, we can show that (13.16) is true in the case where xi  = xi+' for some 
1 # k + 1; this is left as an exercise. 

Based on Lemma 13.1, we can say that the initial parameter choosing method is 
a good one because the fuzzy system with these initial parameters can at least match 
the first M input-output pairs arbitrarily well. If these first M input-output pairs 
contain important features of the unknown nonlinear function f (a), we can hope 
that after the training starts from time point M, the fuzzy identifier will converge to 
the unknown nonlinear system very quickly. In fact, based on our simulation results 
in the next subsection, this is indeed true. However, we cannot choose a: too small 
because, although a fuzzy system with small of matches the first M pairs quite well, 

l 
it may give large approximation errors for other input-output pairs. Therefore, in 
our following simulations we will use the second choice of of described in the on-line 
initial parameter choosing method. 

13.3.3 Simulations 

Example 13.1. The plant to be identified is governed by the difference equation 

where the unknown function has the form g(u) = 0.6sin(~u) + 0.3sin(3~u) + 
O.lsin(5.rru). From (13.15), the identification model is governed by the difference 
equation 

$(k + 1) = 0.3y(k) + 0.6y(k - 1) + f"[u(k)] (13.21) 

where f[*] is in the form of (13.1) with M = 10. We choose a = 0.5 in the training 
algorithm (13.5), (13.8) and (13.9) and use the on-line parameter choosing method. 
We start the training from time point k = 10, and adjust the parameters yl, 35, and 
af for one cycle at each time point. That is, we use (13.5), (13.8) and (13.9) once 
at each time point. Fig. 13.3 shows the outputs of the plant and the identification 
model when the training stops at k = 200, where the input u(k) = sin(2nk/200). 
We see from Fig. 13.3 that the output of the identification model follows the output 
of the plant almost immediately and still does so when the training stops at k = 200. 

Example 13.2. In this example, we show how the fuzzy identifier works for a 
multi-input-multi-output plant that is described by the equations 

The identification model consists of two fuzzy systems, and f2, and is described 
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Figure 13.3. Outputs of the plant and the identification model for Example 
13.1 when the training stops at k = 200. 

by the equations 

$1 ( k  + 1 )  f 1  ( Y I  ( k ) ,  ~ z ( k ) ) ]  + [ul ( k )  ] 
[G2(k+ = [ f 2 ( y l ( k ) ,  y 2 ( k ) )  u2 (k )  (13.23) 

Both f̂ l and f 2  are in the form of (13 .1)  with M = 121. The identification 
procedure is carried out for 5,000 time steps using random inputs u l ( k )  and u 2 ( k )  
whose magnitudes are uniformly distributed over [-1,1] ,  where we choose a = 0.5, 
use the on-line initial parameter choosing method, and train the parameters for one 
cycle at each time point. The responses of the plant and the trained identification 
model for a vector input [ul ( k ) ,  u2 ( k ) ]  = [ s in (2nk /25 ) ,  co s (2nk /25 ) ]  are shown in 
Figs. 13.4 and 13.5 for y l ( k ) - y l ( k )  and yz(lc)-yz(k) ,  respectively. We see that the 
fuzzy identifier follows the true system almost perfectly. 

13.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The derivation of the gradient descent training algorithm. 

The method for choosing the initial parameters of the fuzzy identification 
model and its justification (Lemma 13.1) .  
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Figure 13.4. Outputs of the plant yl(k) and the identification model Gl(k) 
for Example 13.2 after 5,000 steps of training. 

Figure 13.5. Outputs of the plant ys(k) and the identification model Gz(k) 
for Example 13.2 after 5,000 steps of training. 
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Design of fuzzy systems based on the gradient descent training algorithm and 
the initial parameter choosing method. 

Application of this approach to nonlinear dynamic system identification and 
other problems. 

The method in this chapter was inspired by the error back-propagation algorithm 
for neural networks (Werbos [1974]). Many similar methods were proposed in the 
literature; see Jang [I9931 and Lin [1994]. More simulation results can be found in 
Wang [1994]. Narendra and Parthasarathy [1990] gave extensive simulation results 
of neural network identifiers for the nonlinear systems such as those in Examples 
13.1 and 13.2. 

13.5 Exercises and Projects 

Exercise 13.1. Suppose that the parameters 3; and (T$ in (13.1) are fixed and 
only the jjz are free to change. 

(a) Show that if the training algorithm (13.5) converges, then it converges to 
the global minimum of ep of (13.2). 

(b) Let ep(gl) be the ep of (13.2). Find the optimal stepsize cu by minimizing 
e ~ [ g l ( ~ )  - a F z l ]  with respect to a. 

Exercise 13.2. Why is the proof of Lemma 13.1 not valid if x i  = z[+' for 
some 1 # k + l ?  Prove Lemma 13.1 for this case. 

Exercise 13.3. Suppose that we are given K input-output pairs (xg; y:),p = 
1,2, ..., K ,  and we want to design a fuzzy system f (x) in the form of (13.1) such 
that the summation of squared errors 

is minimized. Let the parameters 3f and af be fixed and only the yZ be free to 
change. Determine the optimal y"(1 = 1,2, ..., M) such that J is minimized (write 
the optimal jjl in a closed-form expression). 

Exercise 13.4. Let [x(k)] be a sequence of real-valued vectors generated by the 
gradient descent algorithm 

where e : Rn -+ R is a cost function and e E C2 (i.e., e has continuous second 
derivative). Assume that all x(k) E D C Rn for some compact D, then there exist 
E > 0 and L > 0 such that if 
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then: 

(a) e(x(k + I ) )  < e(x(k)) if Ve(x(k)) # 0; 

(b) x(k) + x* E D as k + ca if e(*) is bounded from below; and 

(c) x* is a local minimum of e(x). 

Exercise 13.5. It is a common perception that the gradient decent algorithm 
in Section 13.2 converges to local minima. Create a set of training samples that 
numerically shows this phenomenon; that is, show that a different initial condition 
may lead to a different final convergent solution. 

Exercise 13.6. Explain how conscious and subconscious knowledge are com- 
bined into the fuzzy system using the design method in Section 13.2. Is it possible 
that conscious knowledge disappears in the final designed fuzzy system? Why? If 
we want to preserve conscious knowledge in the final fuzzy system, how to modify 
the design procedure in Section 13.2? 

13.7 (Project). Write a computer program to implement the training algo- 
rithm (13.5), (13.8), and (13.9), and apply your codes to the time series prediction 
problem in Chapter 12. 



Chapter 14 

Design of Fuzzy Systems Using 
Recursive Least Squares 

14.1 Design of the Fuzzy System 

The gradient descent algorithm in Chapter 13 tries to minimum the criterion eP of 
(13.2), which accounts for the matching error of only one input-output pair (xg; $). 
That is, the training algorithm updates the parameters to match one input-output 
pair at  a time. In this chapter, we develop a training algorithm that minimizes the 
summation of the matching errors for all the input-output pairs up to p, that is, 
the objective now is to design a fuzzy system f (x) such that 

is minimized. Additionally, we want to design the fuzzy system recursively; that is, 
if fP is the fuzzy system designed to minimize J,, then fP should be represented as 
a function of fPPl. We now use the recursive least squares algorithm to design the 
fuzzy system. 

Design of the Fuzzy System by Recursive Least Squares: 

Step 1. Suppose that U = [al ,Pl]  x . . .  x [an,&] c Rn. For each [ai,Pi] 
(i = 1,2, ..., n), define Ni fuzzy sets A: (li = 1,2, ..., Ni), which are complete 
in [ai, Pi]. For example, we may choose A: to be the pseudo-trapezoid fuzzy 
sets: p r i  (xi) = pAfi (xi; a:, b:, c:, dp), where a: = ba = a i ,  4 5 a{+' < 

A, 
d{ < b{+' for j = 1,2, ..., Ni - 1, and c y  = d y  = pi. 

Step 2. Construct the fuzzy system from the following ny=, Ni fuzzy IF- 
THEN rules: 

IF z1 i s  A? and . . . and xn i s  AC,  T H E N  y is ~ ' l " " "  (14.2) 
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where 1; = 1,2, ..., Ni, i = 1,2, ..., n and ~ ' 1 " " -  is any fuzzy set with center at 
811...1n which is free to change. Specifically, we choose the fuzzy system with 

product inference engine, singleton fuzzifier, and center average defuzzifier; 
that is, the designed fuzzy system is 

where gll."'n are free parameters to be designed, and A: are designed in Step 
1. Collect the free parameters y'l'..ln into the nY=l Ni-dimensional vector 

0 = (,gl...l -N11-.1 -121...1 -N121...1 , ..., Y , Y , ..., Y , ..., Y ~ ~ ~ ' . . ~ ~  , ... , Y ~ ~ ~ ~ - . ~ ~  )T 

(14.4) 
and rewrite (14.3) as 

f (x) = bT (x)0 (14.5) 

where 
q X )  = (bl-.l(x), ..., bN11-1 (x), b 121..,1 (x), ..., bN121"'1 (x), ..., 

blNz.-N, (x), ..., bN1N2"'Nn 
(XI)* (14.6) 

Step 3. Choose the initial parameters 0(0) as follows: if there are linguistic 
rules from human experts (conscious knowledge) whose IF parts agree with 
the IF parts of (14.2), then choose yzl""n (0) to be the centers of the THEN 
part fuzzy sets in these linguistic rules; otherwise, choose O(0) arbitrarily in 
the output space V C R (for example, choose O(0) .i. 0 or the elements of 0(0) 
uniformly distributed over V). In this way, we can say that the initial fuzzy 
system is constructed from conscious human knowledge. 

Step 4. For p = 1,2, ..., compute the parameters 0 using the following recur- 
sive least squares algorithm: 

T P 0 b )  = Q(P - 1) + K ( P ) [ Y ~  - b (xo)0b - 111 (14.8) 

K(p) = P(p  - l ) b ( ~ g ) [ b ~ ( x ; ) ~ ( ~  - l)b(x:) + 11-I (14.9) 

P(P) = P(P - 1) - P(P - l)b(x:) 
T P 1 T  P 

[b (x0)P(p - l)b(xg) + 11- b (xO)P(p - 1) (14.10) 

where 8(0) is chosen as in Step 3, and P(0) = OI where a is a large constant. 
The designed fuzzy system is in the form of (14.3) with the parameters gll"'ln 
equal to the corresponding elements in 8(p). 

The recursive least squares algorithm (14.8)-(14-10) is obtained by minimizing 
Jp of (14.1) with f (xi) in the form of (14.3); its derivation is given next. 
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14.2 Derivation of the Recursive Least Squares Algorithm 

Let Y:-' = (y:, ..., y g ~ - l ) ~  and Bp-1 = ( b ( x i ) ,  ..., ~ ( x E - ' ) ) ~ ,  then from (14.5) we 
can rewrite JP-l as 

Since Jp-1 is a quadratic function of 8,  the optimal 8 that minimizes JP-i, denoted 
by 8(p - I ) ,  is 

80,  - 1) = (B:, B ~ - ~ ) - ~ B ~ ~ Y O ~ - ~  (14.12) 

When the input-output pair (xg; ygP) becomes available, the criterion changes to Jp 
of (14.1) which can be rewritten as 

Similar to (14.12), the optimal 8 which minimizes Jp,  denoted by 8(p) ,  is obtained 
as 

To further simplify (14.14), we need to use the matrix identity 

Defining P(p - 1) = ( B ~ , B ~ - ~ ) - ~  and using (14.15), we can rewrite (14.14) as 

Since P ( p  - ~ ) B ~ , Y ~ - ~  = ( B ~ ~ B ~ - ~ ) - ~ B ~ ~ Y ~  = 190, - 1)  (see (14.12)), we 
can simplify (14.16) to  
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Defining K (p) = P ( p  - l)b(xi) [bT (xi) P ( ~  - l)b(x$) + I]-', we obtain (14.8) and 
(14.9). 

Finally, we derive (14.10). By definition, we have 

Using the matrix identity (14.15) and the fact that B;, BP-' = P-' 0) - I) ,  we 
obtain (14.10) from (14.18). 

14.3 Application to Equalization of Nonlinear Communication 
Channels 

14.3.1 The Equalization Problem and Its Geometric Formulation 

Nonlinear distortion over a communication channel is now a significant factor hin- 
dering further increase in the attainable data rate in high-speed data transmission 
(Biglieri, E., A. Gersho, R.D. Gitlin, and T.L. Lim [1984]). Because the received 
signal over a nonlinear channel is a nonlinear function of the past values of the 
transmitted symbols and the nonlinear distortion varies with time and from place 
to place, effective equalizers for nonlinear channels should be nonlinear and adap- 
tive. In this section, we use the fuzzy system designed from the recursive least 
squares algorithm as an equalizer for nonlinear channels. 

The digital communication system considered here is shown in Fig. 14.1, where 
the channel includes the effects of the transmitter filter, the transmission medium, 
the receiver matched filter, and other components. The transmitted data sequence 
s(k) is assumed to be an independent sequence taking values from {-1,l) with 
equal probability. The inputs to the equalizer, x(k), x(k - I), . . , x(k - n + I) ,  are 
the channel outputs corrupted by an additive noise e(k). The task of the equalizer at 
the sampling instant k is to produce an estimate of the transmitted symbol s(k - d) 
using the information contained in x(k), x(k- 1), . . . , x(k - n + 1), where the integers 
n and d are known as the order and the lag of the equalizer, respectively. 

We use the geometric formulation of the equalization problem due to Chen, S., 
G.J. Gibson, C.F.N. Cowan and P.M. Grand [1990]. Define 

where 
X(k) = [k(k), k(k - I), . . . , P(k - n + l)lT, (14.21) 

k(k) is the noise-free output of the channel (see Fig. 14.1), and Pn,d(l) and Pn,d(-1) 
represent the two sets of possible channel noise-free output vectors f (k) that can 
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Figure 14.1. Schematic of data transmission system. 

s(k) 
-+ 

be produced from sequences of the channel inputs containing s ( k  - d )  = 1  and 
s ( k  - d )  = -1,  respectively. The equalizer can be characterized by the function 

Channel 

with 
i ( k  - d )  = g!, (14.23) 

where 
x ( k )  = [ x ( k ) ,  x (k  - I ) ,  . . . , ~ ( k  - n  + l)lT (14.24) 

is the observed channel output vector. Let pl [ x ( k )  1% ( k )  E Pn,d( l ) ]  and p-I [ x ( k )  Ix(k) E 
P n , d ( - l ) ]  be the conditional probability density functions of x ( k )  given x ( k )  E 
Pn,d( l )  and x ( k )  E Pn,d(-1),  respectively. It was shown in Chen, S., G.J. Gibson, 
C.F.N. Cowan and P.M. Grand [1990] that the equalizer that is defined by 

Equalizer 

achieves the minimum bit error rate for the given order n  and lag d ,  where s g n ( y )  = 
1( -1 )  if y  > 0  ( y  < 0 ) .  If the noise e ( k )  is zero-mean and Gaussian with covariance 
matrix 

Q = E [ ( e ( k ) ,  ..., e ( k  - n  + l ) ) ( e ( k ) ,  ..., e ( k  - n  + I ) ) ~ ]  (14.26) 
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then from x ( k )  = O(k) + e ( k )  we have that 

where the first (second) sum is over all the points x+ E Pn,d( l )  ( 2- E Pn,d(- l ) ) .  

Now consider the nonlinear channel 

and white Gaussian noise e ( k )  with E[e2 (k ) ]  = 0.2. For this case, the optimal 
decision region for n = 2 and d = 0, 

is shown in Fig. 14.2 as the shaded area. The elements of the sets P2,o(l) and 
P2,0(-l) are illustrated in Fig. 14.2 by the "on and "*", respectively. From Fig. 
14.2 we see that the optimal decision boundary for this case is severely nonlinear. 

Figure 14.2. Optimal decision region for the channel 
(14.28), Gaussian white noise with variance a: = 0.2, and 
equalizer order n = 2 and lag d = 0, where the horizontal 
axis denotes x(k) and the vertical axis denotes x(k - 1). 



186 Design of Fuzzy Systems Using Recursive Least Squares Ch. 14 

14.3.2 Application of the Fuzzy System to the Equalization Problem 

We use the fuzzy system (14.3) as the equalizer in Fig. 14.1. The operation consists 
of the following two phases: 

Training Phase:  In this phase, the transmitted signal s(k) is known and 
the task is to design the equalizer (that is, the fuzzy system (14.3)). We 
use the design method in Section 14.1 to specify the structure and the pa- 
rameters of the equalizer. The input-output pairs for this problem are: x$ = 
(x(k), ..., x(k -n+ I ) ) ~  and Yt = s(k - d) (the index p in Section 14.1 becomes 
the time index k here). 

Application Phase:  In this phase, the transmitted signal s(k) is unknown 
and the designed equalizer (the fuzzy system (14.3)) is used to estimate s(k - 
d). Specifically, if the output of the fuzzy system is greater than or equal to 
zero, the estimate s^(k - d) = 1; otherwise, s^(k - d) = -1. 

Example  14.1. Consider the nonlinear channel (14.28). Suppose that n = 2 
and d = 0, so that the optimal decision region is shown in Fig. 14.2. Our task is to 
design a fuzzy system whose input-output behavior approximates that in Fig. 14.2, 
where the output of the fuzzy system is quantized as in the Application Phase. We 
use the design procedure in Section 14.1. In Step 1, we choose Nl = N2 = 9 and 

z.-z? 2 
(xi) = exp(-(+) ), where i = 1,2  and 3: = -2 + 0.5(1- 1) for 1 = 1,2, ..., 9. 

In Step 3, we choose the initial parameters 6(0) randomly in the interval [-0.3,0.3]. 
In Step 4, we choose cr = 0.1. Figs.14.3-14.5 show the decision regions resulting 
from the designed fuzzy system when the training in Step 4 stops at k = 30,50 
and 100 (that is, when the p in (14.8)-(14.10) equals 30,50 and loo), respectively. 
From Figs.14.3-14.5 we see that the decision regions tend to converge to the optimal 
decision region as more training is performed. 

Example 14.2. In this example, we consider the same situation as in Example 
14.1 except that we choose d = 1 rather than d = 0. The optimal decision region for 
this case is shown in Fig.14.6. Figs.14.7 and 14.8 show the decision regions resulting 
from the fuzzy system equalizer when the training in Step 4 stops at  k = 20 and 
k = 50, respectively. We see, again, that the decision regions tend to converge to 
the optimal decision region. 
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Figure 14.3. Decision region of the fuzzy system equalizer 
when the training stops at k = 30, where the horizontal axis 
denotes x(k) and the vertical axis denotes x(k - 1). 

Figure 14.4. Decision region of the fuzzy system equalizer 
when the training stops at k = 50, where the horizontal axis 
denotes x(k) and the vertical axis denotes x(k - 1). 
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Figure 14.5. Decision region of the fuzzy system equalizer 
when the training stops at k  = 100, where the horizontal 
axis denotes x ( k )  and the vertical axis denotes x ( k  - 1 ) .  

Figure 14.6. Optimal decision region for the channel 
(14.28) ,  Gaussian white noise with variance uz = 0.2,  and 
equalizer order n = 2 and lag d = 1 ,  where the horizontal 
axis denotes x ( k )  and the vertical axis denotes x ( k  - 1). 
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Figure 14.7. Decision region of the fuzzy system equalizer 
in Example 14.2 when the training stops at k = 20, where 
the horizontal axis denotes x(k) and the vertical axis de- 
notes x(k - 1). 

Figure 14.8. Decision region of the fuzzy system equalizer 
in Example 14.2 when the training stops at k = 50, where 
the horizontal axis denotes x(k) and the vertical axis de- 
notes x(k - 1). 
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14.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Using the recursive least squares algorithm to design the parameters of the 
fuzzy system. 

The techniques used in the derivation of the recursive least squares algorithm. 

Formulation of the channel equalization problem as a pattern recognition 
problem and the application of the fuzzy system with the recursive least 
squares algorithm to the equalization and similar pattern recognition prob- 
lems. 

The recursive least squares algorithm was studied in detail in many standard 
textbooks on estimation theory and adaptive filters; for example, Mendel [I9941 and 
Cowan and Grant [1985]. The method in this chapter is taken from Wang [1994a] 
and Wang and Mendel [I9931 where more simulation results can be found. For a 
similar approach using neural networks, see Chen, S., G.J. Gibson, C.F.N. Cowan 
and P.M. Grand [1990]. 

14.5 Exercises and Projects 

Exercise 14.1. The X o R  function is defined as 

(a) Design a fuzzy system f (xl, x2) in the form of (14.3) such that sgn[f (XI, x2)] 
implements the X o R  function, where sgn(f) = 1 i f f  2 0 and sgn(f) = -1 iff  < 0. 

(b) Plot the decision region {x E Ulsgn[f (x)] 2 01, where U = [-2,2] x [-2,2] 
and f (x) is the fuzzy system you designed in (a). 

Exercise 14.2. Discuss the physical meaning of each of (14.8)-(14.10). Explain 
why the initial P(0) = a1 should be large. 

Exercise 14.3. Prove the matrix identity (14.15). 

Exercise 14.4. Suppose that we change the criterion Jk of (14.1) to 
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where X E (O,1] is a forgetting factor, and that we still use the fuzzy system in the 
form of (14.5). Derive the recursive least squares algorithm similar to (14.8)-(14.10) 
for this new criterion Jk. 

Exercise 14.5. The objective to use the JL of (14.30) is to discount old data by 
putting smaller weights for them. Another way is to consider only the most recent 
N data pairs, that is, the criterion now is 

Let f (xi) be the fuzzy system in the form of (14.5). Derive the recursive least 
squares algorithm similar to (14.8)-(14.10) which minimizes J[ .  

Exercise 14.6. Determine the exact locations of the sets of points: (a) Pz,0(l) 
and P~,o(-1)  in Fig. 14.2, and (b) P2,1(l) and Pztl(-l) in Fig. 14.6. 

14.7 (Project). Write a computer program to implement the design method in 
Section 14.1 and apply your program to the nonlinear system identification problems 
in Chapter 13. 



Chapter 15 

Design of Fuzzy Systems Using 
Clustering 

In Chapters 12-14, we proposed three methods for designing fuzzy systems. In 
all these methods, we did not propose a systematic procedure for determining the 
number of rules in the fuzzy systems. More specifically, the gradient descent method 
of Chapter 13 fixes the number of rules before training, while the table look-up 
scheme of Chapter 12 and the recursive least squares method of Chapter 14 fix the 
IF-part fuzzy sets, which in turn sets a bound for the number of rules. Choosing an 
appropriate number of rules is important in designing the fuzzy systems, because 
too many rules result in a complex fuzzy system that may be unnecessary for the 
problem, whereas too few rules produce a less powerful fuzzy system that may be 
insufficient to achieve the objective. 

In this chapter, we view the number of rules in the fuzzy system as a design 
parameter and determine it based on the input-output pairs. The basic idea is to 
group the input-output pairs into clusters and use one rule for one cluster; that is, 
the number of rules equals the number of clusters. We first construct a fuzzy system 
that is optimal in the sense that it can match all the input-output pairs to arbitrary 
accuracy; this optimal fuzzy system is useful if the number of input-output pairs 
is small. Then, we determine clusters of the input-output pairs using the nearest 
neighborhood clustering algorithm, view the clusters as input-output pairs, and use 
the optimal fuzzy system to match them. 

15.1 An Optimal Fuzzy System 

Suppose that we are given N input-output pairs (xk; y;), 1 = 1,2, ... , N, and N is 
small, say, N = 20. Our task is to construct a fuzzy system f (x) that can match 
all the N pairs to any given accuracy; that is, for any given E > 0, we require that 
If(xb)-y;I < ~ f o r a l l E = 1 , 2  ,..., N. 
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This optimal fuzzy system is constructed as 

Clearly, the fuzzy system (15.1) is constructed from the N rules in the form of (7.1) 
1%"-x',12 

with ,u*t(xi) = exp(- ,,O 
) and the center of Bz equal to y;, and using the 

product 'inference engine, singleton fuzzifier, and center average defuzzifier. The 
following theorem shows that by properly choosing the parameter a ,  the fuzzy 
system (15.1) can match all the N input-output pairs to any given accuracy. 

Theorem 15.1: For arbitrary E > 0, there exists a* > 0 such that the fuzzy 
system (15.1) with u = u* has the property that 

If(&) - Y ~ I  < 
for all 1 = l , 2 ,  ..., N. 

Proof: Viewing x i  and yi as the x;+l and y!+' in Lemma 13.1 and using 
exactly the same method as in the proof of Lemma 13.1, we can prove this theorem. 

The u is a smoothing parameter: the smaller the a, the smaller the matching 
error I f  (xi) - y$, but the less smooth the f (x) becomes. We know that if f (x) 
is not smooth, it may not generalize well for the data points not in the training 
set. Thus, the a should be properly chosen to provide a balance between matching 
and generalization. Because the a is a one-dimensional parameter, it is usually not 
difficult to  determine an appropriate u for a practical problem. Sometimes, a few 
trial-and-error procedures may determine a good u. As a general rule, large a can 
smooth out noisy data, while small u can make f (x) as nonlinear as is required to 
approximate closely the training data. 

The f (x) is a general nonlinear regression that provides a smooth interpolation 
between the observed points (xi; y;). It  is well behaved even for very small a .  

Example 15.1. In this example, we would like to see the influence of the 
parameter a on the smoothness and the matching accuracy of the optimal fuzzy 
system. We consider a simple single-input case. Suppose that we are given five 
input-output pairs: (-2, I ) ,  (-1, O), (0,2), (1,2) and (2,l).  The optimal fuzzy sys- 
tem f (x) is in the form of (15.1) with (xi; y;) = (-2, I),  (-1, O), (0,2), (1,2), (2, l )  
for 1 = 1,2, ..., 5, respectively. Figs. 15.1-15.3 plot the f (x) for a =. 0.1,0.3 and 0.5, 
respectively. These plots confirm our early comment that smaller u gives smaller 
matching errors but less smoothing functions. 17 

15.2 Design of Fuzzy Systems By Clustering 

The optimal fuzzy system (15.1) uses one rule for one input-output pair, thus it 
is no longer a practical system if the number of input-output pairs is large. For 
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Figure 16.1. The optimal fuzzy system in Example 15.1 
with u = 0.1. 

Figure 15.2. The optimal fuzzy system in Example 15.1 
with u = 0.3. 

these large sample problems, various clustering techniques can be used to group the 
input-output pairs so that a group can be represented by one rule. 

From a general conceptual point of view, clustering means partitioning of a 
collection of data into disjoint subsets or clusters, with the data in a cluster having 
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Figure 15.3. The optimal fuzzy system in Example 15.1 
with a = 0.5. 

some properties that distinguish them from the data in the other clusters. For 
our problem, we first group the input-output pairs into clusters according to the 
distribution of the input points, and then use one rule for one cluster. Fig. 15.4 
illustrates an example where six input-output pairs are grouped into two clusters 
and the two rules in the figure are used to construct the fuzzy system. The detailed 
algorithm is given next. 

One of the simplest clustering algorithms is the nearest neighborhood clustering 
algorithm. In this algorithm, we first put the first datum as the center of the first 
cluster. Then, if the distances of a datum to the cluster centers are less than a 
prespecified value, put this datum into the cluster whose center is the closest to this 
datum; otherwise, set this datum as a new cluster center. The details are given as 
follows. 

Design of the Fuzzy System Using Nearest Neighborhood Clustering: 

Step 1. Starting with the first input-output pair (xi; yi), establish a cluster 
center s: at  xi ,  and set A1(l) = yi, B1(l) = 1. Select a radius r. 

Step 2. Suppose that when we consider the k'th input-output pair (xg; yk), 
k = 2,3,  ..., there are M clusters with centers at x:, x:, ..., x p .  Compute the 
distances of x$ to these M cluster centers, 1x5 - xi1, 1 = 1,2, ..., M, and let a 

the smallest distances be 1x5 - ~ $ 1 ,  that is, the nearest cluster to xk is x$. 
Then: 

a) If Ix,k - x$I > r ,  establish x i  as a new cluster center = x$, set 
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IF x1 is All  and x2 is A2', THEN y is B1 

IF xl is AI2 and x2 is THEN y is B2 

Figure 15.4. An example of constructing fuzzy IF-THEN 
rules from input-output pairs, where six input-output pairs 
(x;; yA), ..., (x:; yg) are grouped into two clusters from 
whlch ths two rules are generated. 

AM+'(k)  = y;, B M + ' ( k )  = 1 ,  and keep A 1 ( k )  = A 1 ( k  - l ) ,  B 1 ( k )  = B 1 ( k  - 1)  
for 1 = 1 , 2 ,  ..., M .  

b) If 1%; - x$ I 5 T ,  do the following: 

AZk ( k )  = ~ l k  ( k  - 1)  + y: 

B1k ( k )  = B1k ( k  - 1)  + 1  

and set 

for 1 = 1 , 2 ,  . .. , M with 1 # l k .  

Step 3. 1f x$ does not establish a new cluster, then the designed fuzzy system 
based on the k  input-output pairs (xi; y ; ) ,  j = 1 , 2 ,  ..., k ,  is 
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If x; establishes a new cluster, then the designed fuzzy system is 

Step 4. Repeat by going to Step 2 with k = k + 1. 

From (15.3)-(15.6) we see that the variable B1 (k) equals the number of input- 
output pairs in the l'th cluster after k input-output pairs have been used, and 
A1(k) equals the summation of the output values of the input-output pairs in the 
l'th cluster. Therefore, if each input-output pair establishes a cluster center, then 
the designed fuzzy system (15.8) becomes the optimal fuzzy system (15.1). Because 
the optimal fuzzy system (15.1) can be viewed as using one rule to  match one 
input-output pair, the fuzzy system (15.7) or (15.8) can be viewed as using one rule 
to match one cluster of input-output pairs. Since a new cluster may be introduced 
whenever a new input-output pair is used, the number of rules in the designed fuzzy 
system also is changing during the design process. The number of clusters (or rules) 
depends on the distribution of the input points in the input-output pairs and the 
radius r .  

The radius r determines the complexity of the designed fuzzy system. For 
smaller r ,  we have more clusters, which result in a more sophisticated fuzzy system. 
For larger r, the designed fuzzy system is simpler but less powerful. In practice, a 
good radius r may be obtained by trials and errors. 

Example 15.2. Consider the five input-output pairs in Example 15.1. Our 
task now is to design a fuzzy system using the design procedure in this section. If 
r < 1, then each of the five input-output pair establishes a cluster center and the 
designed fuzzy system f5(x) is the same as in Example 15.1. We now design the 
fuzzy system with r = 1.5. 

In Step 1, we establish the center of the first cluster xi  = -2 and set A1(l) = 
y,l = 1, B1(l) = 1. In Step 2 with k = 2, since lxi-x21 = Ixi-xiI = I-1-(-2)1 = 
1 < r = 1.5, we have A1(2) = A1(l) + y; = 1 + 0 = 1 and B1(2) = B1(l) + 1 = 2. 
Fork = 3, since lxg-x21 = l x ~ - - x ~ l  = 10-(-2)1 = 2 > r ,  we establish anew cluster 
center xz = x3 = 0 together with A2(3) = y: = 2 and B2(3) = 1. The A' and B1 
remain the same, that is, A1(3) = A1(2) = 1 and B1(3) = B1(2) = 2. For k = 4, 
since 1x:-21,41 = Ix:-xzI = 11-01 = 1 < r ,  wehaveA2(4) =A2(3)+yo4 = 2 + 2 =  
4, B2(4) = B2(3) + 1 = 2, A1(4) = A1(3) = 1 and B1(4) = B1(3) = 2. Finally, for 
k = 5, since Ixg-x$I = Ixg-xzI = 12-01 = 2 > r ,  anew cluster center xz = x: = 2 
is established with A3(5) = yi = 1 and B3(5) = 1. The other variables remain the 
same, that is, A1(5) = A1(4) = 1, B1(5) = B1(4) = 2,A2(5) = A2(4) = 4 and 
B2(5) = B2(4) = 2. The final fuzzy system is 
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- - exp(-*) + 4 e x p ( - f )  + exp(-*) (15.9) 
2exp(- y) + 2exp(- $) + exp(-  y) 

which is plotted in Fig. 15.5 with a = 0.3.  Comparing Figs. 15.5 with 15.2 we 
see, as expected, that the matching errors of the fuzzy system (15.9) at the five 
input-output pairs are larger than those of the optimal fuzzy system. 

Figure 15.5. The designed fuzzy system f5(x) (15.9) in Example 15.2 with 
u = 0.3. 

Since the A 1 ( k )  and ~ l ( k )  coefficients in (15.7)  and (15.8) are determined using 
the recursive equations (15.3)-(15.6) ,  it is easy to add a forgetting factor to (15.3)- 
(15.6) .  This is desirable if the fuzzy system is being used to model systems with 
changing characteristics. For these cases, we replace (15.3) and (15.4)  with 

7 - 1  I k 
A'* ( k )  = -A1* ( k  - 1)  + ;yo (15.10) 

7 

7 - 1  1 B~~ ( k )  = - B1* ( k  - 1)  + - (15.11) 
7 T 

and replace (15.5)  and (15.6) with 

7 - 1  
~ l ( k )  = - ~ l ( k -  1)  

7 

where T can be considered as a time constant of an exponential decay function. For 
practical considerations, there should be a lower threshold for B y k )  so that when 
sufficient time has elapsed without update for a particular cluster (which results in 
the B 1 ( k )  to be smaller than the threshold), that cluster would be eliminated. 
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15.3 Application to Adaptive Control of Nonlinear Systems 

In this section, we use the designed fuzzy system (15.7) or (15.8) as a basic com- 
ponent to construct adaptive fuzzy controllers for discrete-time nonlinear dynamic 
systems. We consider two examples, but the approach can be generalized to other 
cases. 

Example 15.3. Consider the discrete-time nonlinear system described by the 
difference equation 

~ ( k  + 1) = g [ ~ ( k ) , ~ ( k  - 111 + ~ ( k )  (15.14) 

where the nonlinear function 

is assumed to be unknown. The objective here is to design a controller u(k) (based 
on the fuzzy system (15.7) or (15.8)) such that the output y(k) of the closed-loop 
system follows the output ym(k) of the reference model 

where r(k) = sin(2~k/25). That is, we want e(k) = y(k) - y,(k) converge to zero 
as k goes to infinity. 

If the function g[y(k), y(k - l ) ]  is known, we can construct the controller as 

which, when applied to (15.14), results in 

Combining (15.16) and (15.18), we have 

from which it follows that limk+.,e(k) = 0. However, since g[y(k), y(k - I)] is 
unknown, the controller (15.17) cannot be implemented. To solve this problem, we 
replace the g[y(k), y(k - I)] in (15.17) by the fuzzy system (15.7) or (15.8); that is, 
we use the following controller 

where fk[y(lc), y(k- I)] is in the form of (15.7) or (15.8) with x = (y(k), y(k - I ) ) ~ .  
This results in the nonlinear difference equation 
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Figure 15.6. Overall adaptive fuzzy control system for Example 15.3. 

governing the behavior of the closed-loop system. The overall control system is 
shown in Fig. 15.6. From Fig. 15.6 we see that the controller consists of two parts: 
an identifier and a controller. The identifier uses the fuzzy system fk to  approximate 
the unknown nonlinear function g, and this fk is then copied to the controller. 

We simulated the following two cases for this example: 

Case 1: The controller in Fig. 15.6 was first disconnected and only the identi- 
fier was operating to identify the unknown plant. In this identification phase, 
we chose the input u(k) to be an i.i.d. random signal uniformly distributed in 
the interval [-3,3]. After the identification procedure was terminated, (15.20) 
was used to generate the control input; that is, the controller in Fig. 15.6 be- 
gan operating with fk copied from the final fk in the identifier. Figs.15.7 
and 15.8 show the output y(k) of the closed-loop system with this controller 
together with the reference model output y,(k) for the cases where the iden- 
tification procedure was terminated at k = 100 and k = 500, respectively. 
In these simulations, we chose u = 0.3 and r = 0.3. From these simulation 
results we see that: (i) with only 100 steps of training the identifier could 
produce an accurate model that resulted in a good tracking performance, and 
(ii) with more steps of training the control performance was improved. 

Case 2 The identifier and the controller operated simultaneously (as shown 
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Figure 15.7. The output y(k) (solid line) of the closed- 
loop system and the reference trajectory y,(k) (dashed 
line) for Case 1 in Example 15.3 when the identification 
procedure was terminated at k = 100. 

Figure 15.8. The output y(k) (solid line) of the closed- 
loop system and the reference trajectory ym(k) (dashed 
line) for Case 1 in Example 15.3 when the identification 
procedure was terminated at k = 500. 
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in Fig. 15.6) from k = 0. We still chose a = 0.3 and r = 0.3. Fig. 15.9 shows 
y(k) and ym(k) for this simulation. 

Figure 15.9. The output y(k) (solid line) of the closed- 
loop system and the reference trajectory ym(k)  (dashed 
line) for Case 2 in Example 15.3. 

Example 15.4. In this example we consider the plant 

where the nonlinear function is assumed to be unknown. The aim is to design a 
controller u(k) such that y(k) will follow the reference model 

Using the same idea as in Example 15.3, we choose 

where fk[y (k), y (k - 1), y (k - 2)] is in the form of (15.7) or (15.8). The basic 
configuration of the overall control scheme is the same as Fig.15.6. Fig.15.10 shows 
y(k) and ym(k) when both the identifier and the controller began operating from 
k = 0. We chose a = 0.3 and r = 0.3 in this simulation. 
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Figure 15.10. The output y(k) (solid line) of the closed- 
loop system and the reference trajectory ym(k )  (dashed 
line) for Example 15.4. 

15.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The idea and construction of the optimal fuzzy system. 

The detailed steps of using the nearest neighborhood clustering algorithm to 
design the fuzzy systems from input-output pairs. 

Applications of the designed fuzzy system to the adaptive control of discrete- 
time dynamic systems and other problems. 

Various clustering algorithms can be found in the textbooks on pattern recog- 
nition, among which Duda and Hart [I9731 is still one of the best. The method in 
this chapter is taken from Wang [1994a], where more examples can be found. 

15.5 Exercises and Projects 

Exercise 15.1. Repeat Example 15.2 with r = 2.2. 

Exercise 15.2. Modify the design method in Section 15.2 such that a cluster 
center is the average of inputs of the points in the cluster, the Az(k)  parameter 
is the average of outputs of the points in the cluster, and the Bz(k) parameter is 
deleted. 
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Exercise 15.3. Create an example to show that even with the same set of 
input-output pairs, the clustering method in Section 15.2 may create different fuzzy 
systems if the ordering of the input-output pairs used is different. 

Exercise 15.4. The basic idea of hierarchical clustering is illustrated in Fig. 
15.11. Propose a method to design fuzzy systems using the hierarchical clustering 
idea. Show your method in detail in a step-by-step manner and demonstrate it 
through a simple example. 

Figure 15.11. The basic idea of hierarchical clustering. 

Exercise 15.5. Consider the two-input-two-output system 

where the nonlinear functions are assumed to be unknown. 

(a) Design an identifier for the system using the fuzzy system (15.7) or (15.8) 
as basic block. Explain the working procedure of the identifier. 

(b) Design a controller for the system such that the closed-loop system outputs 
follow the reference model 

where rl (k) and r2 (k) are known reference signals. Under what conditions will the 
tracking error converge to zero? 

15.6 (Project). Write a computer program to implement the design method 
in Section 15.2 and apply your program to the time series prediction and nonlinear 
system identification problems in Chapters 12 and 13. 



Part IV 

Nonadaptive Fuzzy Control 

When fuzzy systems are used as controllers, they are called fuzzy controllers. If 
fuzzy systems are used to model the process and controllers are designed based on 
the model, then the resulting controllers also are called fuzzy controllers. Therefore, 
fuzzy controllers are nonlinear controllers with a special structure. Fuzzy control has 
represented the most successful applications of fuzzy theory to practical problems. 

Fuzzy control can be classified into nonadaptive fuzzy control and adaptive fuzzy 
control. In nonadaptive fuzzy control, the structure and parameters of the fuzzy 
controller are fixed and do not change during real-time operation. In adaptive fuzzy 
control, the structure orland parameters of the fuzzy controller change during real- 
time operation. Nonadaptive fuzzy control is simpler than adaptive fuzzy control, 
but requires more knowledge of the process model or heuristic rules. Adaptive 
fuzzy control, on the other hand, is more expensive to implement, but requires less 
information and may perform better. In this part (Chapters 16-22), we will study 
nonadaptive fuzzy control. 

In Chapter 16, we will exam the trial-and-error approach to fuzzy controller 
design through two case studies: fuzzy control of a cement kiln and fuzzy control of 
a wastewater treatment process. In Chapters 17 and 18, stable and optimal fuzzy 
controllers for linear plants will be designed, respectively. In Chapters 19 and 20, 
fuzzy controllers for nonlinear plants will be developed in such a way that stability 
is guaranteed by using the ideas of sliding control and supervisory control. A fuzzy 
gain scheduling for PID controllers also will be studied in Chapter 20. In Chapter 
21, both the plant and the controller will be modeled by the Takagi-Sugeno-Kang 
fuzzy systems and we will show how to choose the parameters such that the closed- 
loop system is guaranteed to be stable. Finally, Chapter 22 will introduce a few 
robustness indices for fuzzy control systems and show the basics of the hierarchical 
fuzzy systems. 



Chapter 16 

The Trial-and- Error Approach 
to Fuzzy Controller Design 

16.1 Fuzzy Control Versus Conventional Control 

Fuzzy control and conventional control have similarities and differences. They are 
similar in the following aspects: 

They try to solve the same kind of problems, that is, control problems. There- 
fore, they must address the same issues that are common to any control prob- 
lem, for example, stability and performance. 

The mathematical tools used to analyze the designed control systems are 
similar, because they are studying the same issues (stability, convergence, 
etc.) for the same kind of systems. 

However, there is a fundamental difference between fuzzy control and conven- 
tional control: 

Conventional control starts with a mathematical model of the process and con- 
trollers are designed for the model; fuzzy control, on the other hand, starts 
with heuristics and human expertise (in terms of fuzzy IF-THEN rules) and 
controllers are designed by synthesizing these rules. That is, the information 
used to construct the two types of controllers are different; see Fig.lG.1. Ad- 
vanced fuzzy controllers can make use of both heuristics and mathematical 
models; see Chapter 24. 

For many practical control problems (for example, industrial process control), 
it is difficult to obtain an accurate yet simple mathematical model, but there are 
experienced human experts who can provide heuristics and rule-of-thumb that are 
very useful for controlling the process. Fuzzy control is most useful for these kinds 
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fuzzy control conventional control 

heuristics and mathematical 
human expertise I I model 

I nonlinear controller I 

nonlinear control theory 

Figure 16.1. Fuzzy control versus conventional control. 

of problems. As we will learn in this and the next few chapters, if the mathemat- 
ical model of the process is unknown or partially unknown, we can design fuzzy 
controllers in a systematic manner that guarantee certain key performance criteria. 

We classify the design methodologies for fuzzy controllers into two categories: 
the trial-and-error approach and the theoretical approach. In the trial-and-error 
approach, a set of fuzzy IF-THEN rules are collected from an introspective ver- 
balization of experience-based knowledge (for example, an operating manual) and 
by asking the domain experts to answer a carefully organized questionnaire; then, 
fuzzy controllers are constructed from these fuzzy IF-THEN rules; finally, the fuzzy 
controllers are tested in the real system and if the performance is not satisfactory, 
the rules are fine-tuned or redesigned in a number of trial-and-error cycles until the 
performance is satisfactory. In the theoretical approach, the structure and param- 
eters of the fuzzy controller are designed in such a way that certain performance 
criteria (for example, stability) are guaranteed. Of course, in designing fuzzy con- 
trollers for practical systems we should combine both approaches whenever possible 
to get the best fuzzy controllers. In this chapter, we will illustrate the trial-and-error 
approach through two practical examples-a cement kiln fuzzy control system, and 
a wastewater treatment fuzzy control system. The theoretical approaches will be 
studied in Chapters 17-21. 
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16.2 The Trial-and-Error Approach to Fuzzy Controller Design 

The trial-and-error approach to fuzzy controller design can be roughly summarized 
in the following three steps: 

Step 1: Analyze the real system and choose state and control vari- 
ables. The state variables should characterize the key features of the system 
and the control variables should be able to influence the states of the system. 
The state variables are the inputs to the fuzzy controller and the control vari- 
ables are the outputs of the fuzzy controller. Essentially, this step defines the 
domain in which the fuzzy controller is going to operate. 

Step 2. Derive fuzzy IF-THEN rules that relate the state variables 
with the control variables. The formulation of these rules can be achieved 
by means of two heuristic approaches. The most common approach involves 
an introspective verbalization of human expertise. A typical example of such 
verbalization is the operating manual for the cement kiln, which we will show 
in the next section. Another approach includes an interrogation of experienced 
experts or operators using a carefully organized questionnaire. In these ways, 
we can obtain a prototype of fuzzy control rules. 

Step 3. Combine these derived fuzzy IF-THEN rules into a fuzzy 
system and test the closed-loop system with this fuzzy system as 
the controller. That is, run the closed-loop system with the fuzzy controller 
and if the performance is not satisfactory, fine-tune or redesign the fuzzy 
controller by trial and error and repeat the procedure until the performance 
is satisfactory. 

We now show how to design fuzzy controllers for two practical systems using 
this approach-a cement kiln system and a wastewater treatment process. 

16.3 Case Study I: Fuzzy Control of Cement Kiln 

As we mentioned in Chapter 1, fuzzy control of cement kiln was one of the first 
successful applications of fuzzy control to full-scale industrial systems. In this sec- 
tion, we summarize the cement kiln fuzzy control system developed by Holmblad 
and Bsterguard [I9821 in the late '70s. 

16.3.1 The Cement Kiln Process 

Cement is manufactured by fine grinding of cement clinkers. The clinkers are pro- 
duced in the cement kiln by heating a mixture of limestone, clay, and sand com- 
ponents. For a wet process cement kiln, the raw material mixture is prepared in a 
slurry; see Fig.16.2. Then four processing stages follow. In the first stage, the water 



Sec. 16.3. Case Studv I: Fuzzv Control of Cement Kiln 209 

is driven off; this is called preheating. In the second stage, the raw mix is heated up 
and calcination (COz is driven off) takes place. The third stage comprises burning 
of the material a t  a temperature of approximately 1430°C, where free lime (CaO) 
combines with the other components to form the clinker minerals. In the final stage, 
the clinkers are cooled by air. 

coal from mill 

m 

burning 

calcining 
slurry 
feeder 

/ I preheating 
clinker zone W 

I I I I cooler I I 

xn burner 
pipe 

I 
hot air 

/ 
exhaust gas 

Figure 16.2. The cement kiln process. 

The kiln is a steel tube about 165 meters long and 5 meters in diameter. The 
kiln tube is mounted slightly inclined from horizontal and rotates 1-2 rev/min. The 
clinker production is a continuous process. The slurry is fed to the upper (back) 
end of the kiln, whereas heat is provided to the lower (front) end of the kiln; see 
Fig. 16.2. Due to the inclination and the rotation of the kiln tube, the material is 
transported slowly through the kiln in 3-4 hours and heated with hot gases. The hot 
combustion gases are pulled through the kiln by an exhaust gas fan and controlled 
by a damper that is in the upper end of the kiln as shown in Fig. 16.2. 

Cement kilns exhibit time-varying nonlinear behavior and experience indicates 
that mathematical models for the process become either too simple to be of any 
practical value, or too comprehensive and needled into the specific process to possess 
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any general applicability. However, humans can be trained and in a relatively short 
time become skilled kiln operators. Consequently, cement kilns are specially suitable 
for fuzzy control. 

16.3.2 Fuzzy Controller Design for the Cement Kiln Process 

First, we determine the state and control variables for this system. The state 
variables must characterize the main functioning of the cement kiln process and 
their values can be determined from sensory measurements. The control variables 
must be able to influence the values of the state variables. By analyzing the system, 
the following three state variables were chosen: 

Temperature in the burning zone, denoted by BZ.  

Oxygen percentage in the exhaust gases, denoted by OX. 

Temperature at the back end of the kiln, denoted by BE.  

The values of B Z  can be obtained from the liter weight of clinkers, which is mea- 
sureable. The values of O X  and B E  are obtained from the exhaust gas analyzer 
shown at the back end of the kiln in Fig.16.2. Two control variables were chosen as 
follows: 

Coal feed rate, denoted by CR. 

Exhaust gas damper position, denoted by DP. 

The exhaust gas damper position influences the air volume through the kiln. Each 
of the control variables influences the various stages of preheating, calcining, clinker 
formation and cooling with different delays and time constants ranging from minutes 
to hours. Looking at kiln control in general, we see that kiln speed and slurry fed 
rate can also be used as control variables, but as kilns are normally operated at  
constant production, the adjustment on feed rate and kiln speed are seldom used 
for regulatory control. 

In the second step, we derive fuzzy IF-THEN rules relating the state variables 
BZ, OX and B E  with the control variables CR and DP. We derive these rules from 
the operator's manual for cement kiln control. Fig. 16.3 illustrates an extract from 
an American textbook for cement kiln operators. This section describes how an 
operator must adjust fuel rate (coal feed rate), kiln speed, and air volumn through 
the kiln under various conditions characterized by the temperature in the burning 
zone BZ,  oxygen percentages in the exhaust gases OX,  and temperature at the back 
end of the kiln BE.  We see that the conditions and control actions are described 
in qualitative terms such as "high," "ok," "low," "slightly increase," etc. 

In order to convert the instructions in Fig. 16.3 into fuzzy IF-THEN rules, we 
first define membership functions for the terms "low," "ok," and "high" for different 
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Figure 16.3. Extract from an American textbook for cement kiln operators. 

variables. Fig. 16.4 shows the membership functions for these three terms for the 
variable OX. Others are similar and we omit the details. A set of fuzzy IF-THEN 
rules can be derived from the instructions in Fig. 16.3. For example, from item 10 
in Fig. 16.3, we obtain the following fuzzy IF-THEN rule: 

Reason 

I F  BZ is O K  and O X  is low and BE is low, 

THEN CR is large, DP is large 

Action to be taken Case 

Similarly, item 11 gives the rule 

Condition 

I F  BZ is O K  and OX is low and BE is OK, THEN CR is small (16.2) 

10 

11 

In real implementation, 27 rules were derived to form a complete set of fuzzy IF- 
THEN rules. 

BZ ok 

OX low 
BE low 
BZ ok 

a. Increase air fan speed 

b. Increase fuel rate 
a. Decrease fuel rate speed slightly 

OX low 
BE ok 

To raise back-end temperature and 
increase oxygen for action 'b' 

To maintain burning zone temperature 
To raise oxygen 

To increase oxygen for action 'b' 
To lower back-end temperature and 
maintain burning zone temperature 

12 

13 

14 

15 

BZ ok 
OX low 

a. Reduce fuel rate 
b. Reduce air fan speed 

BE high 
BZ ok 
OX ok 
BE ok 
BZ ok 
OX ok 
BE ok 
BZ ok 
OX ok 
BE high 

a. Increase air fan speed 
b. Increase fuel rate 

None. However, do not get ove 
and keep all conditions under o 

When oxygen is in upper part of ralge 
a. Reduce air fan speed To reduce back-end temperature 
When oxygen is in lower part of ra ge 

16 

17 

b. Reduce fuel rate 
c. Reduce air fan speed 

a. Increase air fan speed 
b. Increase fuel rate 

BZ ok 
OX high 

BE low 
BZ ok 
OX high 
BE ok 

To raise oxygen for action 'c' 
To lower back-end temperature and 
maintain burning zone temperatur 
To raise back-end temperature 
To maintain burning zone temperature 

a. Reduce air fan speed slightly 

and reduce oxygen 

To lower oxygen 
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ok high 

Figure 16.4. Membership functions for "low," "ok," and 
"high" for the variable OX. 

16.3.3 Implementation 

To develop a fuzzy control system for the real cement kiln process, it is not enough 
to have only one fuzzy controller. A number of fuzzy controllers were developed 
to operate in different modes. Specifically, the following two operating modes were 
considered: 

The kiln is in a reasonably stable operation, measured by the kiln drive torque 
showing only small variations. 

The kiln is running unstable, characterized by the kiln drive torque showing 
large and oscillating changes. 

In the cement kiln fuzzy control system developed by Holmblad and Bsterguard 
[1982], eight operation subroutines were developed, in which each subroutine was 
represented by a fuzzy controller or some supporting operations. Fig. 16.5 shows 
these subroutines. Whether or not the kiln is in stable operation is determined 
by Subroutine A, which monitors the variations of the torque during a period of 8 
hours. If the operation is unstable, control is taken over by Subroutine B, which 
adjusts only the amount of coal until the kiln is in stable operation again. 

During stable operation, the desired values of the state variables were: liter 
weight about 1350g/Eiter, the oxygen about 1.8%, and the back-end temperature 
about 197OC. To approach and maintain this desired state, Subroutine C adjusts 
the coal feed rate and the exhaust gas damper position. This subroutine is the fuzzy 
controller described in the last subsection; it performs the main control actions. 
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Subroutine A 

Detects stable or 
unstable operation 

Input: Kiln drive torque 

I Subroutine B I 

Input: Kiln drive torque 

Subroutine E 

to consider time delay 

Output: Litre weight I 
I Subroutine F I- 

Control adjustment if 
CO is registed 

Inputs: CO, exhaust gas temp. 
Outputs: Coal feed rate, 

damner nosi ti on I 
I Subroutine C J I 
7 

Control during stable 
operation 

Inputs: Litre weight, oxygen pct., 
exhaust gas temp. 

Output: Coal feed rate, 
damper position 

/ 

Subroutine G 

Transfer information 
between programs C\ 

I Subroutine D Subroutine H 

Monitor variations of 
NOX-signals 

Ensure bumpless transfer between 
manual and automatic control 

Figure 16.5. Structure of kiln control program. 

Since the liter weight was determined manually from samples of the clinker and 
inserted manually via the operator's console, when the litre weight is inserted it 
represents a state that is between 1 and 2 hours old, compared to the actual state 
of the kiln. This time delay is considered in the Subroutines D and E. Subroutine 
D monitors how the NO-content in exhaust gases is varying as an increasing NO- 
content indicates increasing burning zone temperature and with that a higher liter 
weight. Information on increasing or decreasing NO-content is used in Subroutine E 
to adjust the inserted liter weight. If, for example, the inserted liter weight is high 
and the NO-content is decreasing, the liter weight will be adjusted toward lower 
values depending on how much the NO-content is decreasing. Subroutine E also 
considers that the process needs reasonable time before a response can be expected 
following a control adjustment. 

During stable as well as unstable operations, Subroutine F measures the CO- 
content of the exhaust gases and executes appropriate control. Subroutine G trans- 
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fers information between the subroutines and, finally, Subroutine H ensures that the 
human operator can perform bumpless transfers between manual and automatic kiln 
control. 

16.4 Case Study II: Fuzzy Control of Wastewater Treatment Pro- 
cess 

16.4.1 The Activated Sludge Wastewater Treatment Process 

The activated sludge process is a commonly used method for treating sewage and 
wastewater. Fig. 16.6 shows the schematic of the system. The process (the part 
within the dotted lines) consists of an aeration tank and a clarifier. The wastewater 
entering the process is first mixed with the recycled sludge. Then, air is blown 
into the mixed liquor through diffusers placed along the base of the aeration tank. 
Complex biological and chemical reactions take place within the aeration tank, such 
that water and waste materials are separated. Finally, the processed mixed liquor 
enters the clarifier where the waste materials are settled out and the clear water is 
discharged. 

air 

I T 

WS controller w 
desired' WWmS desired WS flow 

Figure 16.6. Schematic of the activated sludge wastewater treatment process. 
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There are three low-level controllers as shown in Fig.16.6. The WW/RS con- 
troller regulates the ratio of the wastewater flow rate to the recycled sludge flow rate 
to the desired value. The objectives of this controller are to maintain a desirable 
ratio of substrate/organism concentrations and to manipulate the distribution of 
sludge between the aeration tank and the clarifier. The DO controller controls the 
air flow rate to maintain a desired dissolved oxygen level in the aeration tank. A 
higher dissolved oxygen level is necessary to oxidize nitrogen-bearing waste mate- 
rials (this is called nitrification). Finally, the WS controller is intended to regulate 
the total amount and average retention time of the sludge in both the aeration tank 
and the clarifier by controlling the waste sludge flow rate. Higher retention times 
of sludge are generally necessary to achieve nitrification. 

Because the basic biological mechanism within the process is poorly understood, 
a usable mathematical model is difficult to obtain. In practice, the desired values 
of the WW/RS ratio, the DO level and the WS flow are set and adjusted by human 
operators. Our objective is to summarize the expertise of the human operators into 
a fuzzy system so that human operators can be released from the on-line operations. 
That is, we will design a fuzzy controller that gives the desired values of the WW/RS 
ratio, the DO level, and the WS flow. This fuzzy controller is therefore a higher 
level decision maker; the lower level direct control is performed by the WW/RS, 
DO, and WS controllers. 

16.4.2 Design of the Fuzzy Controller 

First, we specify the state and control variables. Clearly, we have the following 
three control variables: 

A WW/RS: change in the desired WW/RS ratio. 

A DO: change in the desired DO level. 

A WS: change in the desired WS flow. 

The state variables should characterize the essential features of the system. Since 
the overall objectives of the wastewater treatment process are to control the total 
amounts of biochemical oxygen and suspended solid materials in the output clear 
water to below certain levels, these two variables should be chosen as states. Ad- 
ditionally, the suspended solids in the mixed liquor leaving the aeration tank and 
in the recycled sludge also are important and should be chosen as state variables. 
Finally, the ammonia-nitrogen content of the output clear water ( N H 3  - N )  and 
the waste sludge flow rate also are chosen as state variables. In summary, we have 
the following six state variables: 

TBO: the total amount of biochemical oxygen in the output clear water. 

TSS: the total amount of suspended solid in the output clear water. 
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MSS: the suspended solid in the mixed liquor leaving the aeration tank. 

RSS: the suspended solid in the recycled sludge. 

NH3-N: the ammonia-nitrogen content of the output clear water. 

WSR: the waste sludge flow rate. 

The next task is to derive fuzzy IF-THEN rules relating the state variables to 
the control variables. Based on the expertise of human operators, the 15 rules in 
Table 16.1 were proposed in Tong, Beck, and Latten [1980], where S, M, L, SN, LN, 
SP, LP, VS and NL correspond to fuzzy sets LLsmall," "medium," "large," "small 
negative," "large negative," "small positive," "large positive," "very small," and 
"not large," respectively. Rules 1-2 are resetting rules in that, if the process is 
in a satisfactory state but WSR is at abnormal levels, then the WSR is adjusted 
accordingly. Rules 3-6 deal with high NH3-N levels in the output water. Rules 7-8 
cater for high output water solids. Rules 9-13 describe the required control actions 
if MSS is outside its normal range. Finally, Rules 14-15 deal with the problem of 
high biochemical oxygen in the output clear water. 

The detailed operation of the system was described in Tong, Beck, and Latten 
[1980]. 

Table 16.1. Fuzzy IF-THEN rules for the wastewater treatment fuzzy controller. 

RuleNo. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

TBO TSS MSS RSS NH3-N WSR 
S S M M  S S 
S S M M  S L 

S M 
S M 
S L 
S L 

NL M 
NL L 

L 
S 

VS 
VS S 
L L 

M S S 
L S S 

A W W / R S  A D O  A WS 
SP 
SN 

SP 
SN 

LP 
LN 

SP 
LP 

LP 
SN 
LN 

SP 
SN 

SN 
LN 
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16.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The general steps of the trial-and-error approach to designing fuzzy con- 
trollers. 

The cement kiln system and how to design fuzzy controllers for it. 

Practical considerations in the real implementation of the cement kiln fuzzy 
control system. 

How to design the fuzzy controller for the activated sludge wastewater treat- 
ment process. 

Various case studies of fuzzy control can be found in the books Sugeno and 
Nishida [I9851 for earlier applications and Terano, Asai, and Sugeno [I9941 for more 
recent applications. The two case studies in this chapter are taken from Holmblad 
and 0stergaard [I9821 and Tong, Beck, and Latten [I9801 where more details can 
be found. 

16.6 Exercises 

Exercise 16.1. Consider the inverted pendulum system in Fig. 1.9. Let xl = 8 
and x2 = e be the state variables. The dynamic equations governing the inverted 
pendulum system are 

where g = 9.8m/s2 is the acceleration due to gravity, mc is the mass of the cart, 
m is the mass of the pole, 1 is the half length of the pole, and u is the applied force 
(control). Design a fuzzy controller to balance the pendulum using the trial-and- 
error approach. Test your fuzzy controller by computer simulations with mc = lkg, 
m = O.lkg, and I = 0.5m. 

Exercise 16.2. Consider the ball-and-beam system in Fig.16.7. Let x = 
(r, +, 8, 8)T be the state vector of the system and y = r be the output of the system. 
Then the system can be represented by the state-space model 
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where the control u is the a,cceleration of 8, and a ,p  are parameters. Design a 
fuzzy controller to control the ball to stay at the origin from a number of initial 
positions using the trial-and-error approach. Test your fuzzy controller by computer 
simulations with a = 0.7143 and /3 = 9.81. 

Figure 16.7. The ball-and-beam system. 

Exercise 16.3. Find more similarities and differences between fuzzy control 
and conventional control other than whose discussed in Section 16.1. 

Exercise 16.4. Find an application of fuzzy control from the books Sugeno 
and Nishida [I9851 or Terano, Asai, and Sugeno [I9941 and describe the working 
principle of the fuzzy control system in some detail. 



Chapter 17 

Fuzzy Control of Linear 
Systems I: Stable Controllers 

From Chapter 16 we see that the starting point of designing a fuzzy controller is 
to get a collection of fuzzy IF-THEN rules from human experts and operational 
manuals. That is, knowing the mathematical model of the process under control 
is not a necessary condition for designing fuzzy controllers. However, in order 
to  analyze the designed closed-loop fuzzy control system theoretically, we must 
have a t  least a rough model of the process. Additionally, if we want to  design a 
fuzzy controller that guarantees some performance criterion, for example, globally 
exponential stability, then we must assume a mathematical model for the process, so 
that mathematical analysis can be done to establish the properties of the designed 
system. In this chapter, we consider the case where the process is a linear system 
and the controller is a fuzzy system. Our goal is to establish conditions on the fuzzy 
controller such that the closed-loop fuzzy control system is stable. 

17.1 Stable Fuzzy Control of Single-Input-Single-Output Systems 

For any control systems (including fuzzy control systems), stability is the most 
important requirement, because an unstable control system is typically useless and 
potentially dangerous. Conceptually, there are two classes of stability: Lyapunov 
stability and input-output stability. Within each class of stability, there are a 
number of specific stability concepts. We now briefly review these concepts. 

For Lyapunov stability, let us consider the autonomous system 

where x E Rn a d g(x) is a n x 1 vector function. Assume that g(0) = 0, thus x = 0 !f is an equilibriu point of the system. 

Definition 17.1. (Lyapunov stability) The equilibrium point x = 0 is said to 
be stable if for any E > 0 there exists 6 > 0 such that I lx(0) 1 1  < S implies Ilx(t)ll < E 
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for all t 2 0. It is said to be asymptotically stable if it is stable and additionally, 
there exists 6' > 0 such that 11x(0)11 < 6' implies x(t) -+ 0 as t -+ oo. Finally, 
the equilibrium point x = 0 is said to be exponentially stable if there exist positive 
numbers a, X and r such that 

for all t 2 0 and llx(O)ll 5 T. If asymptotic or exponential stability holds for any 
initial state ~ ( 0 ) ~  then the equilibrium point x = 0 is said to be globally asymptotic 
or exponential stable, respectively. 

For input-output stability, we consider any system that maps input u(t) E RT 
to output y(t) E Rm. 

Definition 17.2. (Input-output stability) Let Lg be the set of all vector func- 
tions g(t) = (gl(t), ..., gn(t)lT : [O, W) -+ Rn such that 11g11, = (C:=' llgill~)'/2 < 
m7 where Ilgillp = (r l~ i ( t ) lpdt ) '~p~ P E [lyml and llgilla = S U P ~ ~ [ O , ~ )  Igi(t)l. A 
system with input u(t) E RT and output y(t) E Rm is said to be L,-stable if 

u(t) E L i  implies y(t) E L r  (17.3) 

where p E [0, oo]. In particular, a system is La-stable (or bounded-input-bounded- 
output stable) if u(t) E L&, implies y(t) E L g .  

Now assume that the process under control is a single-input-single-output (SISO) 
time-invariant linear system represented by the following state variable model: 

where u E R is the control, y E R is the output, and x E Rn is the state vector. A 
number of important concepts were introduced for this linear system. 

Definition 17.3. (Controllability, Observability, and Positive Real) The system 
(17.4)-(17.5) is said to be controllable if 

and observable if 
r c i  

rank I r" = n 

cAn-l 

The transfer function of the system h(s) = c(s1-A)-'b is said to be strictly positive 
real if 

inf Re[h(jw)] > 0 (17.8) 
w E R  

We are now ready to apply some relevant results in control theory to fuzzy 
control systems. 
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17.1.1 Exponential Stability of Fuzzy Control Systems 

Suppose that the control u(t) in the system (17.4)-(17.5) is a fuzzy system whose 
input is y(t), that is, 

u(t) = - f  [Y(t)l (17.9) 

where f is a fuzzy system. Substituting (17.9) into (17.4)-(17.5), we obtain the 
closed-loop fuzzy control system that is shown in Fig.17.1. We now cite a famous 
result in control theory (its proof can be found in Vidyasagar [1993]). 

process under control 

Figure 17.1. Closed-loop fuzzy control system. 

f(y 

Proposition 17.1. Consider the closed-loop control system (17.4), (17.5), and 
(17.9), and suppose that (a) all eigenvalues of A lie in the open left half of the 
complex plane, (b) the system (17.4)-(17.5) is controllable and observable, and (c) 
the transfer function of the system (17.4)-(17.5) is strictly positive real. If the 
nonlinear function f satisfies f (0) = 0 and 

c 

then the equilibrium point x = 0 of the closed-loop system (17.4), (17.5) and (17.9) 
is globally exponentially stable. 

fuzzy controller 

Conditions (a)-(c) in Proposition 17.1 are imposed on the process under control, 
not on the controller f (y). They are strong conditions, essentially requiring that the 
open-loop system is stable and well-behaved. Conceptually, these systems are not 
difficult to control, thus the conditions on the fuzzy controller, f (0) = 0 and (17. lo), 
are not very strong. Proposition 17.1 guarantees that if we design a fuzzy controller 
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f (y) that satisfies f (0) = 0 and (17.10), then the closed-loop system is globally 
exponentially stable, provided that the process under control is linear and satisfies 
conditions (a)-(c) in Proposition 17.1. We now design such a fuzzy controller. 

Design of Stable Fuzzy Controller: 

Step 1. Suppose that the output y ( t )  takes values in the interval U = [a, /I] c 
R. Define 2N+ 1 fuzzy sets A' in U that are normal, consistent, and complete 
with the triangular membership functions shown in Fig.17.2. That is, we use 
the N fuzzy sets A', ..., AN to  cover the negative interval [a, 0), the other N 
fuzzy sets AN+ 2 ,  ..., A2N+1 to  cover the positive interval (0, PI, and choose the 
center zN+l of fuzzy set AN+' a t  zero. 

Figure 17.2. Membership functions for the fuzzy con- 
troller. 

Step 2. Consider the following 2N + 1 fuzzy IF-THEN rules: 

IF y i s  A', T H E N  u is BZ (17.11) 

where 1 = 1,2,  ..., 2N + 1, and the centers fz of fuzzy sets BZ are chosen such 
that 

< 0 f o r  1 = 1, ..., N 
= O  f o r  l = N + l  
2 0  f o r  l = N + 2 ,  ..., 2 N + 1  

Step 3. Design the fuzzy controller from the 2N + 1 fuzzy IF-THEN rules 
(17.11) using product inference engine, singleton fuzzifier, and center average 
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defuzzifier; that is, the designed fuzzy controller is 

where p ~ 1  (y) are shown in Fig. 17.2 and yZ satisfy (17.12). 

We now prove that the fuzzy controller designed from the three steps above 
produces a stable closed-loop system. 

Theorem 17.1. Consider the closed-loop fuzzy control system in Fig. 17.1. If 
the fuzzy controller u = - f (y) is designed through the above three steps (that is, 
u is given by (17.13)) and the process under control satisfies conditions (a)-(c) in 
Proposition 17.1, then the equilibrium point x = 0 of the closed-loop fuzzy control 
system is guaranteed to be globally exponentially stable. 

Proof: From Proposition 17.1, we only need to prove f (0) = 0 and yf (y) 2 0 
for all y E R. From (17.13) and Fig. 17.2 we have that f (0) = yNtl = 0. If y < 0, 
then from (17.13) and Fig. 17.2 we have 

or f (y) = yll for some l1 E {1,2, ..., N). Since yll 5 0, yll+' I 0 and the member- 
ship functions are non-negative, we have f (y) < 0; therefore, y f (y) 2 0. Similarly, 
we can prove that yf (y) 2 0 if y > 0. 

From the three steps of the design procedure we see that in designing the fuzzy 
controller f (y), we do not need to know the specific values of the process param- 
eters A, b and c. Also, there is much freedom in choosing the parameters of the 
fuzzy controller. Indeed, we only require that the yl's satisfy (17.12) and that the 
membership functions A1 are in the form shown in Fig.17.2. In Chapter 18, we 
will develop an approach to choosing the fuzzy controller parameters in an optimal 
fashion. 

17.1.2 Input-Output Stability of Fuzzy Control Systems 

The closed-loop fuzzy control system in Fig. 17.1 does not have an explicit input. 
In order to study input-output stability, we introduce an extra input and the system 
is shown in Fig. 17.3. We now cite a well-known result in control theory (its proof 
can be found in Vidyasagar [1993]). 

Proposition 17.2. Consider the system in Fig.17.3 and suppose that the non- 
linear controller f (y) is globally Lipschitz continuous, that is, 
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fuzzy controller 

process under control 

Figure 17.3. Closed-loop fuzzy control system with ex- 
ternal input. 

4 

for some constant a. If the open-loop unforced system x = AA~: is globally exponen- 
tially stable (or equivalently, the eigenvalues of A lie in the open left-half complex 
plane), then the forced closed-loop system in Fig. 17.3 is Lp-stable for all p E [l, m]. 

According to Proposition 17.2, if we can show that a designed fuzzy controller 
f (y) satisfies the Lipschitz condition (17.15), then the closed-loop fuzzy control 
system in Fig.17.3 is Lp-stable, provided that the eigenvalues of A lie in the open 
left-half complex plane. It is interesting to see whether the fuzzy controller (17.13) 
designed through the three steps in Subsection 17.1.1 satisfies the Lipschitz condi- 
tion (17.15). We first show that the fuzzy controller f (y) of (17.13) is a continuous, 
bounded, and piece-wise linear function, from which we conclude that it satisfies 
the Lipschitz condition. 

f(y 

Lemma 17.1, The fuzzy controller f (y) of (17.13) is continuous, bounded, and 
piece-wise linear. 

4 

Proof: Let 3' be the center of fuzzy set A' as shown in Fig.17.2 (1 = 1,2, ..., 2N+ 
1). Since the membership functions in Fig. 17.2 are continuous, the f (y) of (17.13) 
is continuous. Since f (y) = y1 for y 5 zl, f (y) = y2N+1 for y 2 zaN+', and 
f (9) equals the weighted average of g1 and jj1+' for y E [zz , zl+l] (1 = 1 ,2 ,  ... ,2N),  
we conclude that the f (y) is bounded. To show that the f (y) is a piece-wise linear 
function, we partition the real line R into R = (-m, ~ ']u[z ' ,  2 2 ] ~ .  . u [ z ~ ~ ,  %2N+1 1 u 
[%2N+1, m). For y E (-m,5l] and y E [zZN+', m) ,  we have f (y) = 9' and f (y) = 
g2N+1, respectively, which are linear functions. For y E [21,~1+1] with some 1 E 
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{1,2, ..., 2N), we have from Fig. 17.2 that 

which is a linear function of y. Since f (y) is continuous, it is a piece-wise linear 
function. 

Combining Lemma 17.1 and Proposition 17.2, we obtain the following theorem. 

Theorem 17.2. Consider the closed-loop fuzzy control system in Fig.17.3. 
Suppose that the fuzzy controller f(y) is designed as in (17.13) and that all the 
eigenvalues of A lie in the open left-half complex plane. Then, the closed-loop fuzzy 
control system in Fig. 17.3 is L,-stable for all p E [0, oo]. 

Proof: Since a continuous, bounded, and piece-wise linear function satisfies the 
Lipschitz condition (17.15), this theorem follows from Proposition 17.2 and Lemma 

17.2 Stable Fuzzy Control of Multi-Input-Multi-Output Systems 

17.2.1 Exponential Stability 

Consider the multi-input-multi-output (MIMO) linear system 

where the input u(t) E Rm, the output y(t) E Rm, and the state x(t) E Rn. We 
assume that the number of input variables equals the number of output variables; 
this is called "squared" systems. In this case, the control u(t) = (ul(t), ..., ~ , ( t ) ) ~  
consists of m fuzzy systems, that is, 

where j = 1,2, ..., m, and fj[y(t)] are m-input-1-output fuzzy systems. The closed- 
loop fuzzy control system is still of the structure in Fig.17.1, except that the vector 
b is replaced by the matrix B, the vector c is replaced by the matrix C, and the 
scalar function f is replaced by the vector function f = (fl, ..., fm)T. For the MIMO 
system (17.17)-(17.18), controllability and observability are still defined by (17.6) 
and (17.7) with b changed to B and c changed to C. For strictly positive real, let 
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H(s) = C(s I  - A)-lB be the transfer matrix and H(s)  is said to be strictly positive 
real if 

inf X,i,[H(jw) + H* (jw)] > 0 
w E R  

(17.20) 

where * denotes conjugate transpose, and Xmi,[H(jw) + H*(jw)] is the smallest 
eigenvalue of the matrix H(jw) + H* (jw). 

As before, we first cite a result from control theory and then design a fuzzy 
controller that satisfies the conditions. The following proposition can be found in 
Vidyasagar [1993]. 

Proposition 17.3. Consider the closed-loop system (17.17)-(17.19), and sup- 
pose that: (a) all eigenvalues of A lie in the open left-half complex plane, (b) the 
system (17.17)-(17.18) is controllable and observable, and (c) the transfer matrix 
H(s) = C(s I  - A)-lB is strictly positive real. If the control vector f (y) satisfies 
f (0) = 0 and 

?lTf(y) 2 01 VY E Ern (17.21) 

then the equilibrium point x = 0 of the closed-loop system (17.17)-(17.19) is globally 
exponentially stable. 

Note that in order to satisfy (17.21), the m fuzzy systems { fl(y), ..., frn(y)) 
cannot be designed independently. We now design these m fuzzy systems in such a 
way that the resulting fuzzy controller f (y) = (fl(y), ..., frn(y))T satisfies (17.21). 

Design of Stable Fuzzy Controller: 

Step 1. Suppose that the output yi(t) takes values in the interval Ui = 
[ai, pi] c R, where i = 1,2, ..., m. Define 2Ni + 1 fuzzy sets Af" in Ui which are 
normal, consistent, and complete with the triangular membership functions 
shown in Fig. 17.2 (with the subscribe i added to all the variables). 

Step 2. Consider m groups of fuzzy IF-THEN rules where the j'th group 
( j  = 1,2, ..., m) consists of the following nE1(2Ni  + 1) rules: 

IF yl i s  A t  and . . . and y, is A:, T H E N  u i s  B?""~  (17.22) 

where li = 1,2 ,..., 2Ni + 1,i = 1,2, ..., m, and the center jj?""" of the fuzzy 
set ~ 1 ?  "'1" 

3 are chosen such that 

where li for i = 1,2, ..., m with i # j can take any values from {1,2, ..., 2Ni+l). 

Step 3. Design m fuzzy systems fj(y) each from the n L l ( 2 N i  + 1) rules in 
(17.22) using product inference engine, singleton fuzzifier, and center average 
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defuzzifier; that is, the designed fuzzy controllers fj(y) are 

where j = 1,2, ..., m. 

We see from these three steps that as in the SISO case, we do not need to know 
the process parameters A, B and C in order to design the fuzzy controller; we only 
require that the membership functions are of the form in Fig.17.2 and the parameters 
jj?"'" satisfy (17.23). There is much freedom in choosing these parameters. We 
now show that the fuzzy controller u = (ul, ..., with u j  designed as in (17.24) 
guarantees a stable closed-loop system. 

Theorem 17.3. Consider the closed-loop fuzzy control system (17.17)-(17.19). 
If the fuzzy controller u = (ul,  ..., = (- fl (y), ..., - f,(y))= is designed through 
the above three steps, (that is, u j  = - fj(y) is given by (17.24)) and the process 
under control satisfies conditions (a)-(c) in Proposition 17.3, then the equilibrium 
point x = 0 of the closed-loop system is globally exponentially stable. 

Proof: If we can show that f (0) = 0 and yTf (y) 2 0 for all y E Rm where 
f (y) = (fl(y), ..., fm(y))T, then this theorem follows from Proposition 17.3. From 
Fig.17.2, (17.23) and (17.24) we have that fj(0) = jj:N1+l)'..(Nm+l) = 0 for j = 
1,2, ..., m. Since yTf(y) = ylfl(y) +...+y,fm(y), if we can show yjfj(y) > 0 for 
all yj E R and all j = 1,2, ..., m, then we have yT f (y) 2 0 for all y E Rm. If yj < 0, 
then from Fig. 17.2 we have that p I ,  (yJ) = 0 for lj  = Nj + 2, ..., 2Nj + 1. Hence, 

A" 
from (17.24) we have 

2Ni+l.. . 2Nj-l+l Nj+l 2Nj+1+l 2Nm+l gl?...lm 
Cl1=l CljP1=l C l j= l  Clj+l=l  . . .  Cim=l  3 ( n z 1  pA!i (yi)) 

f j ( ~ )  = 2N1+1 . . . 2Nm+1 
Cl l=l  Clj- l=l  2N'-1+1 gL:l ~;~:=l:l. zmzl ( n ~ ,  pA(, (Y~) )  

(17.25) 
From (17.23) we have that jj?""" 5 O for Ij = 1,2, ..., Nj + 1, therefore fj(y) 5 0 
and yj fj(y) 2 0. Similarly, we can prove that yjfj(y) > 0 if yj > 0. 

17.2.2 Input-Output Stability 

Consider again the closed-loop fuzzy control system (17.17)-(17-19). Similar to 
Proposition 17.2, we have the following result concerning the L,-stability of the 
control system. 

Proposition 17.4 (Vidgasagar [1993]). Consider the closed-loop control 
system (17.17)-(17.19) and suppose that the open-loop unforced system x = Ax is 
globally exponentially stable. If the nonlinear controller f (y) = (fl (y), ..., f,(y))T 
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is globally Lipschitz continuous, that is, 

where a is a constant, then the closed-loop system (17.17)-(17.19) is Lp-stable for 
all p E [I, co]. 

Using the same arguments as for Lemma 17.1, we can prove that the fuzzy 
systems (17.24) are continuous, bounded, and piece-wise linear functions. Since a 
vector of continuous, bounded, and piece-wise linear functions satisfies the Lipschitz 
condition (17.26), we obtain the following result according to Proposition 17.4. 

Theorem 17.4. The fuzzy control system (17.17)-(17.19), with the fuzzy sys- 
tems fj(y) given by (17.24), is Lp-stable for all p E [ l ,  m], provided that the eigen- 
values of A lie in the open left-half complex plane. 

17.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The classical results of control systems with linear process and nonlinear con- 
troller (Propositions 17.1-17.4). 

Design of stable (exponentially or input-output stable) fuzzy controllers for 
SISO and MIMO linear systems and the proof of the properties of the designed 
fuzzy controllers. 

Vidyasagar [I9931 and Slotine and Li [1991] are excellent textbooks on nonlinear 
control; the first one presented a rigorous treatment to nonlinear control and the 
second one emphasized readability for practitioners. An early attempt to use the 
results in nonlinear control theory to design stable fuzzy controllers was Langari and 
Tomizuka [1990]. Chiu, Chand, Moor, and Chaudhary [I9911 also gave sufficient 
conditions for stable fuzzy controllers for linear plants. The approaches in this 
chapter are quite preliminary and have not been reported in the literature. 

17.4 Exercises 

Exercise 17.1. Suppose @ : Rm -+ Rm and a,  b E R with a < b. The @ is said 
to belong to  the sector [a, b] if: (a) @(0) = 0, and (b) 

Design a SISO fuzzy system with center average defuzzifier that belongs to the 
sector [a, b]. 
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Exercise 17.2. Design a SISO fuzzy system with maximum defuzzifier that 
belongs to the sector [a, b]. 

Exercise 17.3. Design a 2-input-2-output fuzzy system (that is, two 2-input- 
1-output fuzzy systems) with center average defuzzifier that belongs to the sector 
[a, bl. 

Exercise 17.4. Design a 2-input-2-output fuzzy system with maximum defuzzi- 
fier that belongs to the sector [a, b]. 

Exercise 17.5. Show that the equilibrium point x = 0 of the system 

is asymptotically stable but not exponentially stable. How about the system 

Exercise 17.6. Suppose there exist constants a, b,c,r > 0, p > 1, and a 
continuous function V : Rn -i R such that 

Prove that the equilibrium 0 is exponentially stable. 

Exercise 17.7. Simulate the fuzzy controller designed in Section 17.1 for the 
linear system with the transfer function 

Make your own choice of the fuzzy controller parameters that satisfy the condi- 
tions in the design steps. Plot the closed-loop system outputs with different initial 
conditions. 



Chapter 18 

Fuzzy Control of Linear 
Systems II: Optimal and 

Robust Controllers 

In Chapter 17 we gave conditions under which the closed-loop fuzzy control system 
is stable. Usually, we determine ranges for the fuzzy controller parameters such 
that stability is guaranteed if the parameters are in these ranges. We did not 
show how to choose the parameters within these ranges. In this chapter, we will 
first study how to determine the specific values of the fuzzy controller parameters 
such that certain performance criterion is optimized; that is, we first will consider 
the design of optimal fuzzy controllers for linear systems. This is a more difficult 
problem than designing stable-only fuzzy controllers. The approach in this chapter 
is very preliminary. In designing the optimal fuzzy controller, we must know the 
values of the plant parameters A, B and C,  which are not required in designing the 
stable-only fuzzy controllers in Chapter 17. 

The second topic in this chapter is robust fuzzy control of linear systems. This 
field is totally open and we will only show some very preliminary ideas of using the 
Small Gain Theorem to design robust fuzzy controllers. 

18.1 Optimal Fuzzy Control 

We first briefly review the Pontryagin Minimum Principle for solving the optimal 
control problem. Then, we constrain the controller to be a fuzzy system and de- 
velop a procedure for determining the fuzzy controller parameters such that the 
performance criterion is optimized. 
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18.1.1 The Pontryagin Minimum Principle 

Consider the system 
~ ( t )  = g[x(t), u(t)l 

with initial condition x(0) = xo, where x E Rn is the state, u 6 Rm is the control, 
and g is a linear or nonlinear function. The optimal control problem for the system 
(18.1) is as follows: determine the control u(t) such that the performance criterion 

is minimized, where S and L are some given functions, and the final time T may 
be given. 

This optimal control problem can be solved by using the Pontryagin Minimum 
Principle, which is given as follows. First, define the Hamilton function 

and find u = h(x,p) such that H(x, u,p) is minimized with this u. Substituting 
u = h(x,p) into (18.3) and define 

Then, solve the 2n differential equations (with the two-point boundary condition) 

and let x*(t) and p*(t) be the solution of (18.5) and (18.6) (they are called the 
optimal trajectory). Finally, the optimal control is obtained as 

u* (t) = h[x* (t), u* (t)] (18.7) 

18.1.2 Design of Optimal Fuzzy Controller 

Suppose that the system under control is the time-invariant linear system 

where x E Rn and u E Rm, and that the performance criterion is the quadratic 
function 

J = X~(T)MX(T) + [xT( t )~x( t )  + uT(t )~u( t ) ]d t  IT (18.9) 
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where the matrices M E RnXn,  Q E Rnxn and R E RmXm are symmetric and 
positive definite. 

Now, assume that the controller u(t) is a fuzzy system in the form of (17.24) 
except that we change the system output y in (17.24) to the state x; that is, u(t) = 
( ~ 1 ,  ..., with 

We assume that the membership functions are fixed; they can be in the form shown 
in Fig.17.2 or other forms. Our task is to determine the parameters fj;"'" such 
that J of (18.9) is minimized. 

Define the fuzzy basis functions b(x) = (bl (x), . .. , bN ( x ) ) ~  as 

where li = 1,2 ,..., 2Ni + 1,1 = 1,2  ,..., N and N = nyz1(2Ni+ 1). Define the 
parameter matrix O E R m x N  as 

where O? E R1 consists of the N parameters jj?"'"" for li = 1,2, ..., 2Ni + 1 in 
the same ordering as bl(x) for 1 = 1,2, ..., N. Using these notations, we can rewrite 
the fuzzy controller u = (ul, ..., u , ) ~  = (-fi(x), ..., - f , ( ~ ) ) ~  as 

To achieve maximum optimization, we assume that the parameter matrix O is time- 
vary, that is, O = O(t). 

Substituting (18.13) into (18.8) and (18.9), we obtain the closed-loop system 

and the performance criterion 

Hence, the problem of designing the optimal fuzzy controller becomes the problem 
of determining the optimal O(t) such that J of (18.15) is minimized. Viewing the 



Sec. 18.1. OotimaI Fuzzy Control 233 

O ( t )  as the control u ( t )  in the Pontryagin Minimum Principle, we can determine 
the optimal O ( t )  from (18.3)-(18.7). Specifically, define the Hamilton function 

H ( x , O , p )  = xT&x + b T ( x ) ~ T ~ ~ b ( x )  + p T [ A x  + BOb(x)]  (18.16) 

From = 0 ,  that is, 

d H  
-- - 2R@b(x) bT(x)  + BTpbT ( x )  = 0 (18.17) 
d o  

we obtain 
1 o = --R-~B~~~~(x)[~(x)~~(x)]-~ 
2 

(18.18) 

Substituting (18.18) into (18.16), we obtain 

where a ( x )  is defined as 

1 
a ( x )  = - bT ( x )  [b(x) bT (x)]- 'b(x)  

2 
(18.20) 

Using this H* in (18.5) and (18.6), we have 

with initial condition x(0)  = xo and p ( T )  = 2 M x ( T ) .  Let x * ( t )  and p*(t)  (t E 
[O,T]) be the solution of (18.21) and (18.22), then the optimal fuzzy controller 
parameters are 

1 o* ( t )  = - - R-I BTp* ( t )  bT (x* ( t ) )  [b(x* ( t ) )  bT (x* (t))]-' 
2 

(18.23) 

and the optimal fuzzy controller is 

Note that the optimal fuzzy controller (18.24) is a state feedback controller with 
time-varying coefficients. The design procedure of this optimal fuzzy controller is 
now summarized as follows. 
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Design of the Optimal Fuzzy Controller: 

Step 1. Specify the membership functions p l i  (xi) to cover the state space, 
A i 

where li = 1,2, ..., 2Ni + 1 and i = 1,2, ..., n. We may not choose the member- 
ship functions as in Fig. 17.2 because the function a(x) with these member- 
ship functions is not differentiable (we need % in (18.22)). We may choose 
pAli (xi) to be the Gaussian functions. 

Step 2. Compute the fuzzy basis functions bl(x) from (18.11) and the function 
a(%) from (18.20). Compute the derivative v. 
Step 3. Solve the two-point boundary differential equations (18.21) and 
(18.22) and let the solution be x*(t) and p*(t), t E [0, TI. Compute O*(t) 
for t E [0, T] according to (18.23). 

Step 4. The optimal fuzzy controller is obtained as (18.24) 

Note that Steps 1-3 are off-line operations; that is, we first compute O*(t) fol- 
lowing Steps 1-3 and store the O* (t) for t E [0, TI in the computer, then in on-line 
operation we simply substitute the stored O*(t) into (18.24) to obtain the optimal 
fuzzy controller. 

The most difficult part in designing this optimal fuzzy controller is to solve the 
two-point boundary differential equations (18.21) and (18.22). Since these differen- 
tial equations are nonlinear, numerical integration is usually used to solve them. 

18.1.3 Application to  the Ball-and-Beam System 

Consider the ball-and-beam system in Fig. 16.7, with the state-space model given 
by (16.4)- (16.5). Since the ball-and-beam system is nonlinear, to apply our optimal 
fuzzy controller we have to linearize it around the equilibrium point x = 0. The 
linearized system is in the form of (18.8) with 

We now design an optimal fuzzy controller for the linearized ball-and-beam 
system, and apply the designed controller to the original nonlinear system (16.4)- 
(16.5). We choose M = O , Q =  I , R =  I , T  = 30, and Ni = 2 for i = 1,2,3,4. The 
membership functions p l i  (xi) are chosen as 

Ai 
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where i = 1,2,3,4, li = 1,2, ..., 5 and %$i = ai + bi(li - 1) with a1 = a2 = -2, as = 
a4 = -1, bl = b2 = 1 and bg = b4 = 0.5. Fig.18.1 shows the closed-loop output y(t) 
for three initial conditions: 4 0 )  = (1,0,0,0)*, ( 2 , 0 , 0 , 0 ) ~  and (3,0,0,0)*. We see 
from Fig.18.1 that although our optimal fuzzy controller was designed based on the 
linearized model, it could smoothly regulate the ball to the origin from a number 
of initial positions. 

Figure 18.1. Closed-loop outputs y ( t )  (= r ( t ) ,  the ball 
position) with the optimal fuzzy controller for three initial 
conditions. 

18.2 Robust Fuzzy Control 

For almost all practical systems, especially for industrial systems, the plant models 
can never be exactly obtained. Because the controllers are designed for the models, 
good performance in theory and in simulations (where models are used) do not imply 
good performance in real implementations (where controllers are directly applied 
to the real systems, not to the models). The objective of robust control is to design 
controllers that guarantee the stability of the closed-loop systems for a wide range 
of plants. The wider the range of the plants, the more robust the controller is. We 
now consider the design of robust fuzzy controllers for linear plants. 

Consider the fuzzy control system in Fig. 17.1, where the process under control 
is now represented by its transfer function G(s). For simplicity, we assume that 
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G(s) is a SISO system. Define 

and 
0, = {G(s) : Y(G) F a )  

Clearly, the larger the a, the more plants in 0,. The objective of robust fuzzy, 
control is to design a fuzzy controller that stabilizes all the plants in R, while 
allowing the R, to be as large as possible. This is intuitively appealing because the 
larger the R,, the more plants the fuzzy controller can stabilize, which means that 
the fuzzy controller is more robust. 

To achieve the objective, the key mathematical tool is the famous Small Gain 
Theorem (Vidyasagar [1993]). To understand this theorem, we must first introduce 
the concept of the gain of a nonlinear mapping. 

Definition 18.1. Let f : R -+ R satisfy (f (x)l 2 y(x(  for some constant y and 
all x E R. Then the gain off is defined as 

The Small Gain Theorem is now stated as follows. 

Small Gain Theorem. Suppose that the linear plant G(s) is stable and the 
nonlinear mapping f (y) is bounded for bounded input. Then the closed-loop system 
in Fig. 17.1 (with the process under control represented by G(s)) is stable if 

F'rom (18.30) we see that a smaller y ( f )  will permit a larger y (G), and according 
to (18.27)-(18.28) a larger y(G) means a larger set R, of plants that the controller 
f (y) can stabilize. Therefore, for the purpose of robust control, we should choose 
y(f)  as small as possible. The extreme case is f = 0, which means no control at 
all; this is impractical because feedback control is required to improve performance. 
Since the most commonly used fuzzy controller is a weighted average of the yl's 
(the centers of the THEN part membership functions), our recommendation for 
designing robust fuzzy controllers is the following: design the fuzzy controller using 
any method in Chapters 16-26, but try to use smaller yl's in the design. 

Robust fuzzy control is an open field and much work remains to be done. 

18.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The Pontryagin Minimum Principle for solving the optimal control problem. 
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How to use the Pontryagin Minimum Principle to design the optimal fuzzy 
controller for linear plants. 

The Small Gain Theorem and the basic idea of designing robust fuzzy con- 
trollers. 

Good textbooks on optimal control are abundant in the literature, for example 
Anderson and Moore [I9901 and Bryson and Ho [1975]. A good book on robust 
control is Green and Limebeer [1995]. 

18.4 Exercises 

Exercise 18.1. A simplified model of the linear motion of an automobile is 
j: = u, where x(t) is the vehicle velocity and u(t) is the acceleration or deceleration. 
The car is initially moving at xo mls. Using the Pontryagin Minimum Principle 
to design an optimal u(t) which brings the velocity x(tf)  to zero in minimum time 
t f .  Assume that acceleration and braking limitations require lu(t)l < M for all t, 
where M is a constant. 

Exercise 18.2. Use the Pontryagin Minimum Principle to solve the optimiza- 
tion problems: 

(a) X I  = x2, x2 = U, XI (0) = 1, x2(0) = 1, XI (2) = 0,22(2) = 0, minimize 
J = u2(t)dt. 

(b) 5 = u, x(0) = 0, x(1) = 1, minimize J = St (s2 + u2)dt. 

Exercise 18.3. Derive the detailed formulas of the differential equations (18.21)- 
(18.22) for the example in Subsection 18.1.3. (You may or may not write out the 
details of q.) 

Exercise 18.4. Design a fuzzy system f (a) with center average defuzdfier on 
U = [-I, 11 with at least five rules such that: (a) f (0) = 0, and (b) y(f)  = 1, where 
the R in (18.29) is changed to U .  

Exercise 18.5. Design a fuzzy system f (x) with maximum defuzzifier on U = 
[-I, I] with at least five rules such that: (a) f (0) = 0, and (b) y(f) = 1, where the 
R in (18.29) is changed to U .  



Chapter 19 

Fuzzy Control of Nonlinear 
Systems I: Sliding Control 

Sliding control is a powerful approach to controlling nonlinear and uncertain sys- 
tems. It is a robust control method and can be applied in the presence of model 
uncertainties and parameter disturbances, provided that the bounds of these un- 
certainties and disturbances are known. A careful comparison of sliding control 
and fuzzy control shows that their operations are similar in many cases. In this 
chapter, we will explore the relationship between fuzzy control and sliding control, 
and design fuzzy controllers based on sliding control principles. 

19.1 Fuzzy Control As Sliding Control: Analysis 

19.1.1 Basic Principles of Sliding Control 

Consider the SISO nonlinear system 

where u E R is the control input, z E R is the output, and x = (x, 2 ,  ..., x(n-l))T E 
Rn is the state vector. In (19.1), the function f (x) is not exactly known, but the 
uncertainty of f (x) is bounded by a known function of x; that is, 

and 
lAf (x)l i F(x)  

where A f (x) is unknown but f (x)  and F(x) are known. The control objective is 
to determine a feedback control u = u(x) such that the state x of the closed-loop 
system will follow the desired state xd = (xd, kd, ..., x p - ' ) ) ~ ;  that is, the tracking 
error 

- e(n-l))T e = x - xd = (e, el ..., (19.4) 
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should converge to zero, where e = x - xd. 

The basic idea of sliding control is as follows. Define a scalar function 

where X is a positive constant. Then, 

defines a time-varying surface S(t) in the state space Rn. For example, if n = 2 
then the surface S(t) is 

which is a straight line in the x - x phase plane, as shown in Fig. 19.1. Since id and 
xd are usually time-varying functions, the S(t) is also time-varying. If the initial 
state x(0) equals the initial desired state xd(0), that is, if e(0) = 0, then from (19.5) 
and (19.6) we see that if the state vector x remains on the surface S(t) for all t 2 0, 
we will have e(t) = 0 for all t 2 0. Indeed, s(x, t) = 0 represents a linear differential 
equation whose unique solution is e(t) = 0 for the initial condition e(0) = 0. Thus, 
our tracking control problem is equivalent to keeping the scalar function s(x, t) at 
zero. To achieve this goal, we can choose the control u such that 

if the state is outside of S(t),  where is a positive constant. (19.8) is called the 
sliding condition; it guarantees that I s(x, t) 1 will decrease if x is not on the surface 
S(t),  that is, the state trajectory will move towards the surface S(t) ,  as illustrated 
in Fig. 19.1. The surface S(t) is referred to as the sliding surface, the system on the 
surface is in the sliding mode, and the control that guarantees (19.8) is called sliding 
mode control or sliding control. To summarize the discussions above, we have the 
following lemma. 

Lemma 19.1. Consider the nonlinear system (19.1) and let s(x, t) be defined 
as in (19.5). If we can design a controller u such that the sliding condition (19.8) is 
satisfied, then: 

(a) The state will reach the sliding surface S(t) within finite time. 

(b) Once the state is on the sliding surface, it will remain there. 

(c) If the state remains on the sliding surface, the tracking error e(t) will converge 
to zero. 

Therefore, our goal is to design a controller u such that the closed-loop system 
satisfies the sliding condition (19.8). 
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Figure 19.1. Sliding surface in two-dimensional phase 
plane. 

We now derive the details of sliding control for a second-order system, that is, 
the system is (19.1) with n = 2. In this case, (19.8) becomes 

s [ f  (x) + u - xd + Xe] 5 - 7 7 1 ~ 1  (19.9) 

where we used (19.5) and (19.1). If we choose 

then (19.9) becomes 

where sgn(s) = 1 if s > 0, sgn(s) = -1 if s < 0, and f(x) is the estimate of f (x) 
as in (19.2). Furthermore, (19.11) is equivalent to 

Therefore, if we choose 
K(x ,x)  = r]+ F (x )  

then from (19.3) we see that (19.12) is guaranteed, which in turn implies that the 
sliding condition (19.8) is satisfied. In conclusion, the sliding controller is given by 
(19.10) with K(z ,x)  given by (19.13). 
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19.1.2 Analysis of Fuzzy Controllers Based on Sliding Control Principle 

We now use the sliding control principle to analyze fuzzy controllers. For simplicity, 
we consider the system (19.1) with n = 2; but the approach can be generalized to 
high-order systems. Suppose that we choose the control u to be a fuzzy controller 
 fuzz ( 4 ,  that is, 

u = up UZZ(X) (19.14) 

The following theorem specifies conditions on the fuzzy controller ufu,,(x) such 
that the tracking error e converges to zero. 

Theorem 19.1. Consider the nonlinear system (19.1) with n = 2 and assume 
that the control u is given by (19.14). If the fuzzy controller ufUzz(x) satisfies the 
following condition: 

where 7 and X are positive constants and s = B + Xe, then it is guaranteed that the 
tracking error e = (x - xd, x - kd)T will converge to zero. 

Proof: Substituting (19.14) into the sliding condition (19.9), we have 

Clearly, if up,,, (x) satisfies (19.15) and (19.16), then (19.17) is true, which means 
that the sliding condition (19.8) is satisfied and therefore the tracking error will 
converge to zero according to Lemma 19.1. 

From Theorem 19.1 we see that if the designed fuzzy controller satisfies (19.15) 
and (19.16), then the tracking error is guaranteed to converge to zero. However, 
since the fuzzy controller uf,,, (x) must change discontinuously across the sliding 
surface s = 0, it is difficult to use (19.15) and (19.16) as design constraints for the 
fuzzy controller. Therefore, Theorem 19.1 is more of analytical value rather than 
design value. Additionally, the discontinuous control (19.10) or (19.15)-(19.16) will 
cause chattering (see the next section) across the sliding surface, which is unde- 
sirable. In the next section, we will propose another condition for designing fuzzy 
controllers based on the sliding control principle. 

19.2 Fuzzy Control As Sliding Control: Design 

19.2.1 Continuous Approximation of Sliding Control Law 

From the last section we see that the sliding control law (for example, (19.10)) has 
to be discontinuous across the sliding surface S(t). Since the implementation of 
the control switchings could not be perfect and we have to sample the signals in 
digital control systems, this leads to chattering, as shown in Fig. 19.2. Chattering is 
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undesirable because it involves high control activity and may excite high-frequency 
dynamics. A way to eliminate chattering is to introduce a thin boundary layer 
neighboring the sliding surface: 

such that the control changes continuously within this boundary layer; see Fig. 
19.2. cP is called the thickness of the boundary layer and E = @/An-l  is called the 
width of the boundary layer. We now show that if the control law guarantees that 
the sliding condition (19.8) is satisfied outside the boundary layer B(t),  then the 
tracking error is guaranteed to be within the precision of 6 .  

Figure 19.2. Chattering and boundary layer. 

Lemma 19.2. If the sliding condition (19.8) is satisfied outside the boundary 
layer B(t) of (19.18), then it is guaranteed that after finite time we will have 

Proof: Since the sliding condition (19.8) is satisfied outside B(t), we have that 
the state vector x will enter the boundary layer B(t) within finite time and will stay 
inside it afterwards. That is, no matter where the initial state x(0) is, after finite 
time we will have js(x, t )  1 5 cP. Let 
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so we have 

and 
d 

~ i ( t )  = (;ii + N ~ i + l ( t )  

for i = 0,1, ..., n - 2. Hence, 

When i = 0, we have from (19.24), (19.21) and Is(x,t)l 5 + that 

When i = 1, we have 

Continuing this process until i = n - 2, we have 

which is (19.19). 

Lemma 19.2 shows that if we are willing to sacrifice precision, that is, from 
perfect tracking e(t) = 0 to tracking within precision le(t)l 5 c, the requirement 
for control law is reduced from satisfying the sliding condition (19.8) all the time 
to satisfying the sliding condition only when x(t) is outside of the boundary layer 
B(t).  Consequently, we are able to design a smooth controller that does not need to 
switch discontinuously across the sliding surface. Specifically, for the second-order 
system, we change the control law (19.10) to 
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where the saturation function sat(s/@) is defined as 

Clearly, if the state is outside of the boundary layer, that is, if Is/@/ > 1, then 
sat(s/@) = sgn(s) and thus the control law (19.28) is equivalent to the control law 
(19.10). Therefore, the control law (19.28) with K(x ,  x) given by (19.13) guarantees 
that the sliding condition (19.8) is satisfied outside the boundary layer B(t). The 
control law (19.28) is a smooth control law and does not need to switch discontin- 
uously across the sliding surface. 

19.2.2 Design of Fuzzy Controller Based on the Smooth Sliding Control Law 

From the last subsection we see that if we design a fuzzy controller according to 
(19.28), then the tracking error is guaranteed to satisfy (19.19) within finite time. 
For a given precision E, we can choose @ and X such that E = @/An-'; that is, we 
can specify the design parameters @ and X such that the tracking error converges 
to any precision band le(t)l 5 E. Since the control u of (19.28) is a smooth function 
of x and x,  we can design a fuzzy controller to approximate the u of (19.28). From 
the last subsection, we have the following theorem. 

Theorem 19.2. Consider the nonlinear system (19.1) with n = 2 and assume 
that the control u is a fuzzy controller uf,,, If the fuzzy controller is designed as 

ufU,, (x) = -f^(x) + xd - Xi: - [ r ]  + F(x)]sat(s/@) (19.30) 

then after finite time the tracking error e(t) = x(t) - xd(t) will satisfy (19.19). 

Proof: Since the fuzzy controller (19.30) satisfies the sliding condition (19.8) 
when the state is outside of the boundary layer B(t),  this theorem follows from 
Lemma 19.2. 

Our task now is to design a fuzzy controller that approximates the right-hand 
side of (19.30). Since all the functions in the right-hand side of (19.30) are known, 
we can compute the values of the right-hand side of (19.30) at  some regular points 
in the phase plane and design the fuzzy controller according to the methods in 
Chapters 10 and 11. Specifically, we have the following design method. 

Design of the Fuzzy Controller: 

Step 1. Determine the domains of interest for e and e; that is, determine the 
intervals [a l ,p l ]  and [az,Pz] such that e = (e,e)T E U = [al ,Pl]  x [az,Pz]. 

Step 2. Let g(e, i:) = -f^(x) + xd - Xk - [ r ]  + F(x)]sat(s/@) and view this 
g(e, k )  as the g in (10.9). Design the fuzzy controller through the three steps 
in Sections 10.2 or 11.1; that is, the designed fuzzy controller is the fuzzy 
system (10.10). 
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The approximation accuracy of this designed fuzzy controller to the ideal fuzzy 
controller uf,,,(x) of (19.30) is given by Theorems 10.1 or 11.1. As we see from 
these theorems that if we sufficiently sample the domains of interest, the approxi- 
mation error can be as small as desired. 

Example 19.1. Consider the first-order nonlinear system 

l - e - " ( t )  
where the nonlinear function f (x) = is assumed to be unknown. Our task 
is to design a fuzzy controller based on the smooth sliding control law such that the 
x(t) converges to zero. 

Since 

Z e - " ( t )  wechoose f(x) = l , A f ( z )  = m, and F(x)  = 2, so that lAf(x)l 5 F(z) .  For 
this example, xd = 0, e = x - 0 = z ,  s = e = x, and the sliding condition (19.8) 
becomes 

~ ( f  + U) I -171x1 (19.33) 

Hence, the sliding control law is 

where K(x) = + F(x) = + 2. Fig. 19.3 shows the closed-loop state x(t) using 
this sliding controller for four initial conditions, where we chose q = 0.1 and the 
sampling rate equal to 0.02s. We see that chattering occurred. 

The smooth sliding controller is 

usm(x) = - f (x) - K(x)sat(x/@) (19.35) 

Viewing this u,,(x) as the g(x) in (10.9), we designed a fuzzy controller following 
the three steps in Section 11.1 (this is a one-dimensional system, a special case of 
the system in Section 11.1), where we chose @ = 0.2, U = [-2,2], N = 9, and the 
ej's to be uniformly distributed over [-2,2]. Fig.19.4 shows the closed-loop x(t) 
with this fuzzy controller for the same initial conditions as in Fig. 19.3. Comparing 
Figs.19.4 with 19.3, we see that chattering disappeared, but a steady tracking error 
appeared; this is as expected: chattering was smoothed out with the sacrifice of 
precision. 
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Figure 19.3. Closed-loop state x ( t )  for the nonlinear sys- 
tem (19.31) with the sliding controller (19.34) for four dif- 
ferent initial conditions. 

Figure 19.4. Closed-loop state x(t) for the nonlinear sys- 
tem (19.31) with the fuzzy controller for four different ini- 
tial conditions. 
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19.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

How to design sliding controllers for nonlinear systems and what are the fun- 
damental assumptions. 

What is chattering and how to smooth it (the balance between tracking pre- 
cision and smooth control). 

How to design fuzzy controllers based on the smooth sliding control laws. 

Sliding control was studied in books by Utkin [I9781 and Slotine and Li [1991]. 
Applying sliding mode concept to fuzzy control was due to Palm [1992]. Books 
by Driankov, Hellendoorn, and Reinfrank [I9931 and Yager and Filev [I9941 also 
examined sliding mode fuzzy control. 

19.4 Exercises 

Exercise 19.1. Consider the second-order system 

where a(t) is unknown but verifies 

Design a sliding controller u such that x converges to the desired trajectory xd. 

Exercise 19.2. Consider the nonlinear system 

x = f (x, x) + g(x, x)u (19.38) 

where f and g are unknown but f (x) = f(x) + A f (x), lA f (x)l 5 F(x),  with 
j (x)  and F(x)  known, and 0 < gmin(x) 5 g(x) I gmax(x), with gmin(x) and 
gmax(x) known. Let ij(x) = [gmin(x)gmax(x)]1/2 be the estimate of g(x) and ,B = 
[gmax (x)/gmin (x)I1l2. Show that the control law 

with 
K(x) 2 P ( F + q )  + ( p -  1)1 -.f(x) +$d  - ~ 6 1  (19.40) 

satisfies the sliding condition (19.8). 

Exercise 19.3. Simulate the sliding controller (19.34) in Example 19.1 using 
different sampling rate and observe the phenomenon that the larger the sampling 
rate, the stronger (in terms of the magnitude of the oscillation) the chattering. 
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Example 19.4. Consider the nonlinear system 

where a1 (t) and a 2  (t) are unknown time-varying functions with the known bounds 

Design a fuzzy controller based on the smooth sliding controller such that the closed- 
loop state xl(t) tracks a given desired trajectory xd(t). 

Exercise 19.5. Design a sliding controller, using the approach in Subsection 
19.1.1, and a fuzzy controller, using the trial-and-error approach in Chapter 16, 
for the inverted pendulum system. Compare the two controllers by plotting: (a) 
the control surfaces of the two controllers, and (b) the responses of the closed-loop 
systems with the two controllers. What are the conclusions of your comparison? 



Chapter 20 

Fuzzy Control of Nonlinear 
Systems I I: Supervisory Control 

20.1 Multi-level Control Involving Fuzzy Systems 

The fuzzy controllers considered in Chapters 17-19 are single-loop (or single-level) 
controllers; that is, the whole control system consists of the process and the fuzzy 
controller connected in a single loop. For complex practical systems, the single-loop 
control systems may not effectively achieve the control objectives, and a multi-level 
control structure turns out to be very helpful. Usually, the lower-level controllers 
perform fast direct control and the higher-level controllers perform low-speed su- 
pervision. In this chapter, we consider two-level control structures where one of the 
levels is constructed from fuzzy systems. We have two possibilities: (i) the first-level 
controller is a fuzzy controller and the second level is a nonfuzzy supervisory con- 
troller (see Fig. 20.1), and (ii) the first level consists of a conventional controller (for 
example, a PID controller) and the second level comprises fuzzy systems performing 
supervisory operations (see Fig. 20.2). 

The main advantage of two-level control is that different controllers can be de- 
signed to target different objectives, so that each controller is simpler and perfor- 
mance is improved. Specifically, for the two-level control system in Fig. 20.1, we 
can design the fuzzy controller without considering stability and use the supervi- 
sory controller to deal with stability related problems. In this way, we have much 
freedom in choosing the fuzzy controller parameters and consequently, the design 
of the fuzzy controller is simplified and performance is improved. We will show the 
details of this approach in the next section. For the two-level control system in 
Fig. 20.2, we will consider the special case where the first level is a PID controller 
and the second-level fuzzy system adjusts the PID parameters according to certain 
heuristic rules; the details will be given in Section 20.3. 
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Process + 

Fuzzy Controller first-level 
control 

Nonfuzzy second -level 
Supervisory control 
Controller 

Figure 20.1. Architecture of a two-level fuzzy control sys- 
tem, where the fuzzy controller performs the main control 
action and the nonfuzzy supervisory controller monitors 
the operation and takes action when something undesir- 
able happens. 

Process 

Fuzzy Systems n 

+ 

+ first-level 
control 

second -level 
control 

I 

Conventional 
Controller 

(e.g., PID controller: 

Figure 20.2. Architecture of a two-level fuzzy control 
system, where the first level is a conventional controller and 
the second level consists of fuzzy systems that supervise and 
modify the operations of the conventional controller. 

+ 
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20.2 Stable Fuzzy Control Using Nonfuzzy Supervisor 

20.2.1 Design of the Supervisory Controller 

Conceptually, there are at least two different approaches to guarantee the stabil- 
ity of a fuzzy control system. The first approach is to specify the structure and 
parameters of the fuzzy controller such that the closed-loop system with the fuzzy 
controller is stable (for example, the fuzzy controllers in Chapters 17 and 19). In 
the second approach, the fuzzy controller is designed first without any stability con- 
sideration, then another controller is appended to the fuzzy controller to take care 
of the stability requirement. Because there is much flexibility in designing the fuzzy 
controller in the second approach, the resulting fuzzy control system is expected to 
show better performance. 

The key in the second approach is to design the appended second-level nonfuzzy 
controller to guarantee stability. Because we want the fuzzy controller to perform 
the main control action, the second-level controller would be better a safeguard 
rather than a main controller. Therefore, we choose the second-level controller to 
operate in the following supervisory fashion: if the fuzzy controller works well, the 
second-level controller is idle; if the pure fuzzy control system tends to be unstable, 
the second-level controller starts working to guarantee stability. Thus, we call the 
second-level controller a supervisory controller. 

Consider the nonlinear system governed by the differential equation 

dn) = f (z, 2 ,  ..., ~ ( ~ - l ) )  + g(z, x, ..., ~ ( ~ - l ) ) u  (20.1) 

where $1: E R is the output of the system, u E R is the control, x = (z, x, ..., x ( ~ - ' ) ) ~  
is the state vector that is assumed to be measurable or computable, and f and g 
are un:known nonlinear functions. We assume that g > 0. From nonlinear control 
theory (Isidori [1989]) we know that this system is in normal form and many general 
nonlinear systems can be transformed into this form. The main restriction is that 
the control u must appear linearly in the equation. 

Nolu suppose that we have already designed a fuzzy controller 

for the system. This can be done, for example, by the trial-and-error approach 
in Cha,pter 16. Our task is to guarantee the stability of the closed-loop system 
and, at, the same time, without changing the existing design of the fuzzy controller 
UJ,,,(:K). More specifically, we are required to design a controller whose main 
control action is the fuzzy control uf,,,(x) and that the closed-loop system with 
this controller is globally stable in the sense that the state x is uniformly bounded, 
that is, Ix(t)l < Mx,Vt > 0, where Mx is a constant given by the designer. 

For this task, we append the fuzzy controller uf,,,(x) with a supervisory con- 
troller us(x), which is nonzero only when the state x hits the boundary of the 
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constraint set {x : 1x1 < M z ) ;  that is, the control now is 

u = uf tL,, (x) + I*% (x) (20.3) 

where the indicator function I* = 1 if 1x1 2 M, and I* = 0 if 1x1 < M,. Therefore, 
the main control action is still the fuzzy controller ufu,,(x). Our task now is to 
design the us such that Ix(t)l < M, for all t > 0. 

Let us first examize whether it is possible to design such a supervisory controller 
without any additional assumption. Substituting (20.3) into (20.1) we have that 
the closed-loop system satisfies 

x'"' = f (x) + ~ ( x ) ~ ~ u z z ( x )  + S(X)I*US(X) (20.4) 

Now suppose 1x1 = M, and thus I* = 1. Because we assume that f(x) and g(x) 
are totally unknown and can be arbitrary nonlinear functions, for any us(x) we can 
always find f (x) and g(x) such that the right-hand side of (20.4) is positive, and 
therefore we will have 1x1 > M,. Thus, we must make additional assumptions for 
f(x) and g(x) in order for such us design to be possible. We need the following 
assumption. 

Assumption 20.1: We can determine functions fU(x) and g ~ ( x )  such that 
If (x) 1 5 f (x) and 0 < g~ (x) < g(x), that is, we assume that we know the upper 
bound of If (x) I and the lower bound of g(x). 

In practice, the bounds f U(x) and gL(x) usually are not difficult to  find because 
we only require to know the loose bounds, that is, f U(x) can be very large and gL(x) 
can be very small. Also, we require to have state-dependent bounds, which is weaker 
than requiring fixed bounds. 

Before we design the supervisory controller us, we need to write the closed-loop 
system equation into a vector form. First, define 

where k = (k,, ..., k ~ ) ~  E Rn is such that all roots of the polynomial sn + klsn-I + 
... + kn are in the left-half complex plane. Using this u*, we can rewrite (20.4) as 

Define 
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then (20.6) can be written into the vector form 

We now design the supervisory controller us to  guarantee 1x1 5 Mx. Define the 
Lyapunov function candidate 

1 
V = - x T p x  

2 
(20.10) 

where P is a symmetric positive definite matrix satisfying the Lyapunov equation 

where Q > 0 is specified by the designer. Because A is stable, such P always exists. 
Using (20.9) and (20.11) and considering the case 1x1 2 Mx, we have 

Our goal now is to design us such that v 5 0 ,  that is, the right-hand side of (20.12) 
is non-positive. Observing (20.12) and (20.5), we choose the us as follows: 

Substituting (20.13) into (20.12) we have v 5 0. Therefore, the supervisory con- 
troller us of (20.13) guarantees that 1x1 is decreasing if 1x1 > Mx. Consequently, if 
we choose the initial Ix(O)I 5 M,, we will have Ix(t)l 5 Mx for all t > 0. Because 
g > 0 and x and P are available, s ign(xTPb)  in (20.13) can be computed. Also, 
all other terms in (20.13) are available, thus the us of (20.13) can be implemented 
on-line. 

Because the I* in (20.3) is a step function, the supervisory controller begins 
operation as soon as x hits the boundary 1x1 = Mx and is idle as soon as the x is 
back to the interior of the constraint set 1x1 5 Mz7 hence the system may oscillate 
across the boundary 1x1 = Mz. One way to overcome this "chattering" problem is 
to let I* continuousZg change from 0 to  1. Specifically, we may choose the I* as 
follows: 

a 5 1x1 < Mx (20.14) 
1 1x1 2 Mx 
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where a E (0, Mx) is a parameter specified by the designer. With this I* in (20.3), 
the supervisory controller us operates continuously from zero to full strength as 
x changes from a to Mx. Obviously, this I* can also guarantee that 1x1 5 Mx 
(Exercise 20.1). 

20.2.2 Application to Inverted Pendulum Balancing 

In this subsection, we apply a fuzzy controller together with the supervisory con- 
troller to the inverted pendulum balancing problem. The control objective is to 
balance the inverted pendulum and, at the same time, to guarantee that the state 
is bounded. The inverted pendulum system is illustrated in Fig. 1.9 and its dynamic 
equations are 

where g = 9.8m/s2 is the acceleration due to gravity, mc is the mass of cart, m is 
the mass of pole, 1 is the half length of pole, and u is the applied force (control). 
We chose mc = lkg, m = O.lkg, and I = 0.5m in the following simulations. Clearly, 
(20.15)-(20.16) is in the form of (20.1), thus our approach applies to this system. 

Assume that the fuzzy controller uf,,, is constructed from the following four 
fuzzy IF-THEN rules: 

IF  $1 i s  positive and xz is positive, T H E N  u i s  negative big(20.17) 

IF  xl is positive and xz is negative, T H E N  u i s  zero (20.18) 

IF  xl i s  negative and 2 2  i s  positive, T H E N  u i s  zero (20.19) 

IF  x1 i s  negative and 2 2  i s  negative, T H E N  u i s  positive bid20.20) 

where the fuzzy sets "positive," "negative," "negative big," "zero," and "positive 
big" are characterized by the membership functions 

1 
pnegative ($1 = --- 1 + e30x 

(20.22) 

Pnegative big (u)  = e-(U+5)2 (20.23) 

~zevo(u) = ePU2 (20.24) 

~ l p o s i t i v e  big (u) = e-(U-5)2 (20.25) 

respectively. Using the center average defuzzifier and the product inference engine, 
we obtain the fuzzy controller uf,,, as follows: 
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To design the supervisory controller, we first need to determine the bounds f 
and g ~ .  For this system, we have 

If we require that lxl 1 5 7r/9 (we will specify the design parameters such that this 
requirement is satisfied), then 

Our control objective is to balance the inverted pendulum from arbitrary initial 
angles xl E [ - ~ 1 9 ,  7r/9] and at  the same time to guarantee 1 I(x1, x2)I 12 5 7r/9 = Mx. 

The design parameters are specified as follows: a = ~ 1 1 8 ,  kl = 2, k2 = 1 (so 
that s2 + kls + k2 is stable) and Q = diag(l0,lO). Then, we solve the Lyapunov 
equation (20.11) and obtain 

We simulated three cases: (i) without the supervisory controller, that is, only 
use the fuzzy controller (20.26), (ii) use the supervisory controller together with 
the fuzzy controller, and (iii) same as (ii) except that a white Gaussian noise 
with variance 3 was added to the control u, which represents wind-gusts distur- 
bance. For each case, we simulated the closed-loop system for five initial conditions: 
(XI (O), x2 (0)) = (4O, O), (so, O), (12O, O), (16O, O), (20°, 0). The simulation results for 
cases (i), (ii) and (iii) are shown in Figs. 20.3, 20.4, and 20.5, respectively, where 
we show the angle xl(t) as a function of t for the five initial conditions. We see 
from these results that: (a) the pure fuzzy controller could balance the inverted 
pendulum for smaller initial angles 4O, 8" and 12O, but the system became unstable 
for larger initial angles 16' and 20°, (b) by appending the supervisory controller to 
the fuzzy controller, we successfully balanced the inverted pendulum for all the five 
initial angles and guaranteed that the angle is within [-20°, 20°], and (c) the fuzzy 
controller was robust to random disturbance. 
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Figure 20.3, The closed-loop system state xl(t) for the 
five initial conditions using only the fuzzy controller. 

Figure 20.4. The closed-loop system state xl(t) for the 
five initial conditions using the fuzzy controller with the 
supervisory controller. 
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Figure 20.5. The same as Fig. 20.4 except that a white 
Gaussian noise with variance 3 was added to the control u. 

20.3 Gain Scheduling of PID Controller Using Fuzzy Systems 

20.3.1 The PID Controller 

Due to their simple structure and robust performance, proportional-integral-derivative 
(PID) controllers are the most commonly used controllers in industrial process con- 
trol. The transfer function of a PID controller has the following form: 

where Kp, Ki and Kd are called the propositional, integral, and derivative gains, 
respectively. Another equivalent form of the PID controller is 

where Ti = Kp/Ki and Td = Kd/Kp are known as the integral and derivative time 
constants, respectively. 

The success of the PID controller depends on an appropriate choice of the PID 
gains. Turning the PID gains to optimize performance is not a trivial task. In 
practice, the PID gains are usually turned by experienced human experts based on 
some "rule of thumb." In the next subsection, we will first determine a set of turning 
rules (fuzzy IF-THEN rules) for the PID gains by analyzing a typical response of 
the system, and then combine these rules into a fuzzy system that is used to adjust 
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the PID gains on-line. We will follow the approach proposed by Zhao, Tomizuka, 
and Isaka [1993]. 

20.3.2 A Fuzzy System for Turning the PID Gains 

Consider the two-level control system of Fig. 20.2, where the conventional controller 
is a PID controller in the form of (20.30) (or equivalently (20.31)) and the fuzzy 
system turns the PID gains in real time. The fuzzy system is constructed from a set 
of fuzzy IF-THEN rules that describe how to choose the PID gains under certain 
operation conditions. We first reformulate the problem and then derive the fuzzy 
IF-THEN rules. 

Suppose that we can determine the ranges [Kpmin,Kpmax] C R and [Kdmin, 
Kdmax] C R such that the proportional gain Kp E [Kpmin, Kpmax] and the deriva- 
tive gain Kd E [Kdmin, Kdmax]. For convenience, Kp and Kd are normalized to the 
range between zero and one by the following linear transformation: 

K' = Kp - Kpmin (20.32) 
Kpmax - Kpmin 

KA = Kd - Kdmin 
Kdmax - Kdmin 

Assume that the integral time constant is determined with reference to the deriva- 
tive time constant by 

Ti = aTd (20.34) 

from which we obtain 
Ki = Kp/(aTd) = K ; / ( ~ K ~ )  

Hence, the parameters to be turned by the fuzzy system are KA, KA and a .  If we 
can determine these parameters, then the PID gains can be obtained from (20.32), 
(20.33) and (20.35). Assume that the ir~puts to the fuzzy system are e(t) and B(t), 
so the fuzzy system turner consists of three two-input-one-output fuzzy systems, as 
shown in Fig. 20.6. We now derive the fuzzy IF-THEN rules that constitute these 
fuzzy systems. 

Let the fuzzy IF-THEN rules be of the following form: 

IF e(t) is A' and 6 ( t )  is B', T H E N  Kh is c', K i  is D1, a is E' (20.36) 

where A', B1, C1, D1 and E k e  fuzzy sets, and 1 = 1,2, ..., M. Suppose that the 
domains of interest of e(t) and k(t) are [e;, e&] and [eGd, ehd],  respectively, and 
we define 7 fuzzy sets, as shown in Fig. 20.7, to cover them. Thus, a complete fuzzy 
rule base consists of 49 rules. For simplicity, assume that C1 and D1 are either the 
fuzzy set big or the fuzzy set small whose membership functions are shown in Fig. 
20.8. Finally, assume that El can be the four fuzzy sets shown in Fig. 20.9. We are 
now ready to derive the rules. 



Figure 20.6. Fuzzy system turner for the PID gains. 

Figure 20.7. Membership functions for e( t )  and d ( t ) .  

Here we derive the rules experimentally based on the typical step response of 
the process. Fig. 20.10 shows an example of the typical time response. At the 
beginning, that is, around a l ,  a big control signal is needed in order to achieve a 
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Figure 20.8. Membership functions for KL and KA. 

t S M S  M B 

Figure 20.9. Membership functions for a. 

fast rise time. To produce a big control signal, we need a large proportional gain 
Kb, a small derivative gain Ki,  and a large integral gain. From (20.35) we see that 
for fixed K, and Kd,  the integral gain is inversely proportional to a,  therefore a 



Sec. 20.3. Gain Scheduling of PID Controller Using Fuzzy Systems 261 

larger integral gain means a smaller a. Consequently, the rule around a1 reads 

IF e(t) i s  P B  and B(t) i s  20, THEN KL is  Big, K i  is Small, a i s  S (20.37) 

where the membership functions for the fuzzy sets PB, 20, Big, Small, and S are 
shown in Figs. 20.7-20.9. 

Figure 20.10. The typical step response of process. 

Around point b l  in Fig. 20.10, we expect a small control signal to avoid a large 
overshoot. So we need a small proportional gain, a large derivative gain, and a 
small integral gain. Thus, the following rule is taken: 

IF e(t) is ZO and d(t) i s  NB,  THEN KL is  Small, Ki is Big, a is B (20.38) 

The control actions around points CI and dl are similar to those around points a1 
and bl, respectively. Using this kind of idea, we can determine three sets of rules 
for Kk, K i  and a,  and each set consists of 49 rules. These three sets of rules are 
shown in Figs. 20.11-20.13, respectively. 

We combine the 49 rules in each set using product inference engine, singleton 
fuzzifier, and center average defuzzifier; that is, the parameters Kk, K i  and a are 
turned on-line according to 
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Figure 20.11. Fuzzy turning rules for KL. 

i(t> 
NB N M  NS ZO PS PM PB 

B B B B B B B  
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B B B B B B B  

e(t) 

Figure 20.12. Fuzzy turning rules for Ki .  
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Figure 20.13. Fuzzy turning rules for a. 

where A1 and B' are shown in Fig. 20.7, and I;, and ji: are the centers of the 
corresponding fuzzy sets in Figs. 20.8 and 20.9 (according to the rules in Figs. 
20.11-20.13). 

Simulation results and comparison with classici~l methods can be found in Zhao, 
Tomizuka, and Isaka [1993]. 

20.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The structure and working principles of two-level fuzzy control. 

How to design the nonfuzzy supervisory controller to guarantee the global 
stability of the fuzzy control system. 

How to derive fuzzy IF-THEN rules for turning the PID gains based on heuris- 
tic analysis of the typical step response. 

Multi-level control has been studied in the field of intelligent robotics, see Vala- 
vanis and Saridis [I9921 and Tzafestas [1991]. The supervisory control idea in this 
chapter was proposed in Wang [1994b]. Using fuzzy systems to turn the PID pa- 
rameters was studied by a number of researchers and the approach in this chapter 
was due to Zhao, Tomizuka, and Isaka [1993]. 
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20.5 Exercises 

Exercise 20.1. Show that if we use the continuous indicator function I* of 
(20.14) in the controller (20.3) with the us given by (20.13), we can still guarantee 
that Jx(t) 1 < Mx for all t 2 0 if Ix(0) I < Mz. Furthermore, show that in this case 
there exists M i  < Mz such that Ix(t)l < M; for all t 2 0 if Ix(O)I < M;. 

Exercise 20.2. Discuss the similarities and differences between the supervisory 
controller in this chapter and the sliding controller in Chapter 19. 

Exercise 20.3. Repeat the simulations in Subsection 20.2.2 with slightly dif- 
ferent fuzzy control rules and different initial conditions. 

Exercise 20.4. In the PID controller (20.30), Kp, Ki/s,  and Kds  are called 
proportional, integral, and derivative modes, respectively. Use examples to show 
that: 

(a) The proportional mode provides a rapid adjustment of the manipulated 
variable, does not provide zero steady-atate offset although it reduces the error, 
speeds up dynamic response, and can cause instability if tuned improperly. 

(b) The integral mode achieves zero steady-state offset, adjusts the manipulated 
variable in a slower manner than the proportional mode, and can cause instability 
if tuned improperly. 

(c) The derivative mode does not influence the final steady-state value of error, 
provides rapid correction based on the rate of change of the controlled variable, and 
can cause undesirable high-frequency variation in the manipulated variable. 

Exercise 20.5. Consider the two-level fuzzy control system in Fig. 20.2, where 
the process is given by 

27 
G(s) = 

(S + 1)(s + 3)3 

the conventional controller is the PID controller, and the fuzzy systems are given by 
(20.39)-(20.41). Simulate this system and plot the process output. You may choose - + -  any reasonable values for Kpmi,, Kp,ax, Kdmin, Kdmaz, e ~ ,  eM, eMd and eLd.  



Chapter 21  

Fuzzy Control of Fuzzy System 
Model 

In Chapters 17-20, we studied the fuzzy control systems where the processes under 
control are represented by ordinary linear or nonlinear dynamic system models. 
In many practical problems, human experts may provide linguistic descriptions (in 
terms of fuzzy IF-THEN rules) about the process that can be combined into a model 
of the process; this model is called a fuzzy system model. Therefore, it is interesting 
to study the fuzzy control system in which the process is modeled by fuzzy systems 
and the feedback controller is a fuzzy controller; this is the topic of this chapter. 

We will first introduce the Takagi-Sugeno-Kang (TSK) fuzzy system and derive 
the detailed formula of the closed-loop system in which the process and the controller 
are represented by the TSK fuzzy system. Then, we will analyze the stability of 
the closed-loop system. Finally, a design procedure for stable fuzzy controllers will 
be introduced. 

21.1 The Takagi-Sugeno-Kang Fuzzy System 

The Takagi-Sugeno-Kang (TSK) fuzzy system was proposed as an alternative to 
the fuzzy systems we have been using in most parts of this book. The TSK fuzzy 
system is constructed from the following rules: 

IF 21 is C; and  . . . and  xn is  c;, THEN y1 = cb + cixl + . . . + cix, (21.1) 

where Cl are fuzzy sets, c: are constants, and 1 = 1,2, ..., M. That is, the IF parts of 
the rules are the same as in the ordinary fuzzy IF-THEN rules, but the THEN parts 
are linear combinations of the input variables. Given an input x = (XI, ..., x , ) ~  E 
U C Rn, the output f (x) E V C R of the TSK fuzzy system is computed as the 
weighted average of the yz's in (21.1), that is, 
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where the weights wz are computed as 

We see that the TSK fuzzy system is still a mapping from U c Rn to  V c R. 
The physical meaning of the rule (21.1) is that when x is constrained to the fuzzy 
range characterized by the IF part of the rule, the output is a linear function of 
the input variables. Therefore, the TSK fuzzy system can be viewed as a somewhat 
piece-wise linear function, where the change from one piece to the other is smooth 
rather than abrupt. If c: = 0 for i = 1,2, ..., n and cb equals the center gE of the 
fuzzy set B' in the ordinary fuzzy IF-THEN rule (7.1), then the TSK fuzzy system 
is identical to the fuzzy system with product inference engine, singleton fuzzifier, 
and center average defuzzifier (comparing (21.2)-(21.3) with (9.1)). 

If the output of a TSK fuzzy system appears as one of its inputs, we obtain the 
so-called dynamic TSK fuzzy system. Specifically, a dynamic TSK fuzzy system is 
constructed from the following rules: 

IF x(k) i s  A: and . .. and x(k - n + 1) i s  AP, and u(k) is BP 

T H E N  xP(k + 1) = ayx(k) + . . + aP,x(k - n + 1) + bPu(k) (21.4) 

where A: and BP are fuzzy sets, a: and b p  are constants, p = 1,2, ... , N ,  ~ ( k )  is the 
input to the system, and x(k) = (x(k), x(k - I) ,  ..., x(k - n + l ) )T E Rn is the state 
vector of the system. The output of the dynamic TSK fuzzy system is computed as 

where xp(k + 1) is given in (21.4) and 

We will use this dynamic TSK fuzzy system to model the process under control. 

21.2 Closed-Loop Dynamics of Fuzzy Model with Fuzzy Con- 
troller 

Consider the feedback control system in Fig. 21.1, where the process under control 
is modeled by the dynamic TSK fuzzy model (21.5), and the controller is the TSK 
fuzzy system (21.2) with cb = 0 and xi = x( t - i+  1) for i = 1,2, ..., n. The following 
theorem gives the closed-loop dynamics of the control system in Fig. 21.1. 
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Figure 21.1. Fuzzy control of fuzzy system model. 

, 

u(k) - 

Theorem 21.1. The closed-loop fuzzy control system in Fig. 21.1 is equivalent 
to the dynamic TSK fuzzy system constructed from the following rules: 

x(k+ 1) 
Process 

(modeled by the dynamic x(k) - 
TSK fuzzy system (21.5)) 

IF  x ( k )  is  (c! and A:) and . . . and x(k  - n + 1) i s  (c: and A:) and u ( k )  is  B P ,  
n 

T H E N  xzP(k  + 1) = x ( a f  + bpci)x(k - i + 1) (21.7) 
i= 1 

Controller 

(in the form of the TSK 
fuzzy system (21.2)) 

where u ( k )  is the output of the controller, I = 1,2, ..., M ,  p = 1,2, ..., N ,  and the 
fuzzy sets (C: and A:) are characterized by the membership functions pc! ( x ( k  - 
i + l ) ) p A p  ( x ( k  - i + 1)). The output of this dynamic TSK fuzzy system is computed 
as 

where 



268 Fuzzy Control of Fuzzy System Models Ch. 21 

Proof: From Fig. 21.1 we see that the u ( k )  in (21.4) equals the f ( x )  of (21.2). 
Hence, xp(k + 1) in (21.4) becomes 

Substituting (21.11) into (21.5), we obtain the output of the closed-loop system 

which is (21.8). 

Example 21.1. Suppose that the process in Fig. 21.1 is modeled by a second- 
order dynamic TSK fuzzy system that is constructed from the following two rules: 

L' : I F  x ( k )  is A: and  x (k  - 1) is A; and  u ( k )  is B ~ ,  

T H E N  x l ( k  + 1) = 1.5x(k) + 2.lx(k - 1) - u ( k )  (21.13) 

L' : I F  x ( k )  is AT and x ( k  - 1)  is A; and  u ( k )  is B2, 

T H E N  x2(k  + 1) = 0.3x(k) - 3.4x(k - 1) + 0.5u(k) (21.14) 

and that the controller in Fig. 21.1 is a TSK fuzzy system constructed from the 
following two rules: 

R1 : I F  x ( k )  is C; and  x (k  - 1) is c:, 
T H E N  u l ( k )  = k:x(k) + k i x ( k  - 1) (21.15) 

R~ : I F  x ( k )  is C; and x (k  - 1) is Cg, 

T H E N  u2 (k )  = k;x(k)  + kgx(k - 1) (21.16) 

Then from Theorem 21.1 we have that the closed-loop system is a dynamic TSK 
fuzzy system constructed from the following four rules: 

S1' : I F  x ( k )  is (A:  and C!)  and  x (k  - 1) is (A: and c;) and  u ( k )  is B 1 ,  

T H E N  x l l ( k  + 1) = (1.5 - k i ) x ( k )  + (2.1 - k i ) x ( k  - 1) (21.17) 

S12 : I F  x ( k )  is (A: and c:) and x ( k  - 1) is (A; and c;) and u ( k )  is B', 
T H E N  x12(k + 1) = (1.5 - k:)x(k) i- (2.1 - e ) x ( k  - 1) (21.18) 
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s2' : IF x(k) is (A! and Ci) and x(k - 1) is (A: and C;) and u(k) is B ~ ,  

THEN x2l(k + 1) = (0.3 + 0.5k:)x(k) + (-3.4 + 0.5ki)x(k - 1) (21.19) 

s~~ : IF x(k) is (A; and c;) and x(k - 1) is (A; and c;) and u(k) is B ~ ,  
THEN x22(k + 1) = (0.3 + 0.5k;)x(k) + (-3.4 + 0.5k:)x(k - 1) (21.20) 

The dynamic equation can be obtained according to  (21.8)-(21.10). 

Since the closed-loop fuzzy control system in Fig. 21.1 is equivalent to a dynamic 
TSK fuzzy system, it is therefore important to study the stability of the dynamic 
TSK fuzzy system; this is the topic of the next section. 

21.3 Stability Analysis of the Dynamic T S K  Fuzzy System 

Consider the dynamic TSK fuzzy system (21.5) with bp in (21.4) equal zero. We 
assume bP = 0 because comparing (21.4) with (21.7) we see that there is no bPu(k) 
term in (21.7). Define the state vector x(k) = (x(k), z(k - I) ,  ..., x(k - n i- I ) ) ~  and 

Then the dynamic TSK fuzzy system (21.5) can be rewritten as 
\ 

where UP is defined in (21.6). Since the right-hand side of (21.22) equals zero when 
x(k) = 0, the origin in Rn is an equilibrium point of the dynamic system (21.22). We 
now use the following well-known Lyapunov stability theorem to study the stability 
of the dynamic system (21.22) 

Lyapunov Stability Theorem: Consider the discrete-time system described 
by 

~ ( k  f 1) = f [x(k)] (21.23) 

where x(k) E Rn and f (0) = 0. Suppose that there exists a scalar function V[x(k)] 
such that: (a) V(0) = 0, (b) V[x(k)] > 0 for x(k) # 0, (c) V[x(k)] -+ m as 
(Ix(k)ll -+ m ,  and (d) AV[x(k)] = V[x(k + l ) ]  - V[x(k)] < 0 for x(k) # 0, then the 
equilibrium point 0 of the system (21.23) is globally asymptotically stable. 

In order to apply this theorem to the system (21.22), we need the following 
lemma. 
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Matr ix  Inequality Lemma: If P is a positive definite matrix such that 

where A, B,  P E Rnxn,  then 

Proof of this lemma is left as an exercise. Using the Lyapunov Stability Theorem 
and the Matrix Inequality Lemma, we obtain the following theorem on the stability 
of the dynamic TSK fuzzy system (21.22). 

Theorem 21.2. The equilibrium point 0 of the dynamic TSK fuzzy system 
(21.22) is globally asymptotically stable if there exists a common positive definite 
matrix P such that 

A;PA,-P < 0 (21.26) 

for all p = 1,2, ..., N. 

Proof: Consider the Lyapunov function candidate 

where P is a positive definite matrix. This V[x(k)] satisfies conditions (a)-(c) in 
the Lyapunov Stability Theorem; we now show that it also satisfies condition (d). 
Using (21.22), we have 

Rearrange the summations, (21.28) becomes 

From (21.26), the Matrix Inequality Lemma, and the fact that U P  > 0, we con- 
clude that AV[x(k)] < 0. Hence, this theorem follows from the Lyapunov Stability 
Theorem. I7 
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Figure 21.2. Membership functions for the fuzzy sets in 
the rules (21.30)-(21.31). 

Theorem 21.2 gives a sufficient condition for ensuring the stability of the dynamic 
TSK fuzzy system (21.22). We may intuitively guess that the nonlinear system 
(21.22) is stable if all locally approximate linear systems A, (p = 1,2, ..., N) are 
stable (the linear system x(k + 1) = A,x(k) is stable if all the eigenvalues of A, 
are within the unit circle). However, this is not true in general, as we notice that 
even if all the Abs are stable, there may not exist a common positive definite matrix 
P such that (21.26) is true. The following example shows that two locally stable 
linear systems result in an unstable nonlinear system. 

Example  21.2. Consider a dynamic TSK fuzzy system constructed from the 
following two rules: 

IF x(k - 1) i s  F l ,  T H E N  xl(k + 1) = x(k) - 0.5x(k - 1) (21.30) 
IF x(k - 1) i s  F2, T H E N  x2(k + 1) = -x(k) - 0.5x(k - 1) (21.31) 

where the membership functions of the fuzzy sets Fl and F2 are shown in Fig. 21.2. 
For this system, we have 

The eigenvalues of A1 and A2 are and y, respectively, which are all within 
the unit circle, so the two locally approximate linear systems x(k+ 1) = Alx(k) and 
x(k+ 1) = Asx(k) are stable. However, the dynamic TSK fuzzy system constructed 
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I 

from the tie ru3gr(21.30) and ( 2 1 . 3 1 ) c  

is unstable, as illustrated in Fig. 21.3, which shows the ~ ( k )  resulting from (21.33) 
with initial condition x(1) = (%(I),  ~ ( 0 ) ) ~  = (-1.7,1.9)~. 

Figure 21.3. Res~onse of the dynamic TSK fuzzy system - " 

(21.33) ( z ( k ) )  with initial condition x(1) = ( z ( l ) ,  ~ ( 0 ) ) ~  = 
(-1.7,1.9)~. 

Obviously, in Example 21.2 there does not exist a common P such that (21.26) 
is true, since the final dynamic TSK fuzzy system is unstable. We now give a 
necessary condition for ensuring the existence of the common P. 

Lemma 21.1. Assume that A, (p = 1,2, .. ., N)  are stable and nonsingular 
matrices. If there exists a common positive matrix P such that ATPA, - P < 0 
for p = 1,2, ..., N,  then ApAq are stable matrices for all p, q = 1,2, ..., N.  

Proof of this lemma is left as an exercise. Lemma 21.1 shows that if any ApAq is 
an unstable matrix, then the common P does not exist and therefore it is possible 
that the dynamic TSK fuzzy system is unstable. For Example 21.2, we have 

whose eigenvalues are and one of which is outside of the unit circle. 

There is no general procedure that guarantees to find such common P. Usually, 
a trial-and-error approach has to be taken, as we will show in the next section. 
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21.4 Design of Stable Fuzzy Controllers for the Fuzzy Model 

In Theorem 21.2, a sufficient condition was given to ensure the stability of the 
dynamic TSK fuzzy system. In Theorem 21.1, it was proven that the closed-loop 
fuzzy control system in Fig.21.1 can be represented as a dynamic TSK fuzzy system. 
Therefore, we can use Theorem 21.2 to design stable fuzzy controllers for the fuzzy 
system model; this is the topic of this section. 

Since there is no systematic way to find the common P in Theorem 21.2, our 
design procedure, which is given below, has to be trial and error in nature. 

Design of Stable Fuzzy Controller for Fuzzy System Model: 

Step 1. Use Theorem 20.1 to represent the closed-loop fuzzy control system as 
a dynamic TSK fuzzy system. The parameters a: and bp and the membership 
functions p p  for the process are known, and those for the controller (that 
is, c: and pc!) are to be designed. Usually, fix the p,; and design the cf 
according to ?heorem 21.2. 

Step 2. Choose the parameters cf such that all the locally approximate linear 
systems are stable, where, according to (21.7), the locally approximate linear 
systems are x(k + 1) = Alpx(k) with 

where 1 = l ,2 ,  ..., M ,  and p = l ,2 ,  ..., N. 

Step 3. Find positive definite matrices Plp such that 

for I = 1,2, ..., M  and p = 1,2, ..., N. If there exists Ppp* for some fixed 
I*  E {1,2, ..., M )  and p* E {1,2, ..., N) such that 

for all 1 = 1,2, ..., M  and p = 1,2, ..., N, then select this PZ*,. as the common 
P; otherwise, go to Step 2 to redesign the parameters 4 until the common 
P = Pl.,. is found. 

Since there is much freedom in choosing the parameters cf in Step 2, it is possible 
that we can find the common P after several iterations. Of course, we cannot 
guarantee that such common P can be found. We now test the design procedure 
through an example. 
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Example 21.3. Suppose that the process is modeled by a dynamic TSK fuzzy 
system with the following two rules: 

I F  x ( k )  is G I ,  T H E N  x l ( k  + 1) = 2.18x(k) - 0.59x(k - 1) 

-0.603~(k)  (21.38) 

I F  x ( k )  is G2, T H E N  x2(k + 1) = 2.26x(k) - 0.36x(k - 1) 

-1 .120~(k)  (21.39) 

and the controller is a TSK fuzzy system constructed from the two rules: 

I F  x ( k )  is G l ,  T H E N  u l ( k )  = c:x(k) + cix(k  - 1) (21.40) 

I F  x ( k )  is G 2 ,  T H E N  u2 (k )  = cTx(k) + c;x(k - 1) (21.41) 

where the membership functions for G I  and G2 are shown in Fig. 21.4, and the 
controller parameters c i ,  c i ,  cf and ci are to be designed such that the closed-loop 
system is stable. 

Figure 21.4. Membership functions for the fuzzy sets in 
Example 21.3. 

Step 1. From Theorem 21.1 we obtain that the closed-loop system is a dynamic 
TSK fuzzy system constructed from the following four rules: 

I F  x ( k )  is (GI  and G 2 ) ,  T H E N  x l1(k  + 1) = (2.18 - 0.603c:)x(k) 
+(-0.59 - 0.603c~)x(k - 1) (21.42) 

I F  s ( k )  is (GI and G z ) ,  THEN x12(k + 1) = (2.18 - 0.603c:)x(k) 
+(-0.59 - 0.603c;)x(k - 1) (21.43) 
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IF x(k) is (GI and Gz), THEN x2l(k + 1) = (2.26 - 1.120c:)x(k) 

+(-0.36 - 1.120ci)x(k - 1) (21.44) 

IF x(k) is (GI and Gz), THEN x22(k + 1) = (2.26 - 1.120c:)x(k) 

+(-0.36 - 1.120c;)x(k - 1) (21.45) 

Step 2. The four matrices Alp for the four linear subsystems (21.42)-(21.45) are 

After much trial and error, we found that if we choose 

then all the four linear subsystems are stable. 

Step 3. We found that a common P can be found for the parameters in (21.50). 
Therefore, our stable fuzzy controller is the TSK fuzzy system constructed from the 
two rules (21.40)-(21.41) with the parameters given by (21.50). 

21.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The static and dynamic TSK fuzzy systems. 

The dynamic equation of the closed-loop system in which the process is mod- 
eled by a dynamic TSK fuzzy system and the controller is a static TSK fuzzy 
system. 

Conditions that ensure the stability of the above closed-loop system. 

How to design the fuzzy controller such that the closed-loop system above is 
stable. 

Using the TSK fuzzy systems to model nonlinear systems was studied in Takagi 
and Sugeno [I9851 and Sugeno and Kang [1988]. The stability analysis in this 
chapter was due to Tanaka and Sugeno [I9921 where more examples can be found. 
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21.6 Exercises 

Exercise 21.1. Prove the Matrix Inequality Lemma. 

Exercise 21.2. If we change condition (d) in the Lyapunov Stability Theorem 
to AV[x(k)] = V[x(k + I)] - V[x(k)] < 0 for x(k) in a neighborhood of 0, then the 
conclusion becomes that the system is asymptotically stable. Prove that the system 

is asymptotically stable. 

Exercise 21.3. Prove Lemma 21.1. 

Exercise 21.4. Consider the dynamic TSK fuzzy system (21.22) with N = 2. 
Suppose that Al and Az are stable and A1A2 = A2A1. Given Po > 0, determine 
the matrices PI and P 2  from 

Prove that P2 is the common P in Theorem 21.2. 

Exercise 21.5. Generalize the procedure of finding the common P in Exercise 
21.4 to arbitrary N. 

Exercise 21.6. Suppose that the process under control is modeled by a dynamic 
TSK fuzzy system constructed from the rules (21.38) and (21.39). Design a linear 
controller u(k) = Kx(k) (that is, determine the constant K )  such that the closed- 
loop system is stable. 

Exercise 21.7. Repeat Exercise 21.6, with the fuzzy sets G1 and Gz replaced 
by the fuzzy sets Fl and F2 in Fig. 21.2, respectively. 



Chapter 22 

Qualitative Analysis of Fuzzy 
Control and Hierarchical Fuzzy 

Systems 

22.1 Phase Plane Analysis of Fuzzy Control Systems 

Phase plane analysis is a graphical method for studying second-order systems. The 
basic idea is to generate motion trajectories of the system in the state space corre- 
sponding to various initial conditions, and then to examine the qualitative features 
of the trajectories. In this way, information concerning stability, robustness and 
other properties of the system can be obtained. The state space for second-order 
systems is called the phase plane. 

The main advantage of phase plane analysis is its graphical nature, which allows 
us to visualize what goes on in a nonlinear system starting from different initial 
conditions, without having to solve the nonlinear equations analytically. The main 
disadvantage of the method is that it is restricted to second-order systems and is 
difficult to  generalize to higher-order systems. 

We now use the phase plane method to study second-order fuzzy control systems. 
Let x = (xl, be the state and consider the fuzzy control system 

x = f (x) + bu 
u = +(x) 

where f (x) is a nonlinear vector function (vector field) representing the plant dy- 
namic, b is a two-dimensional vector, u is a scalar control variable, and +(x) is a 
two-input-one-output fuzzy system. To study this closed-loop fuzzy control system, 
it is helpful to identify which rules are firing along a certain trajectory. Suppose 
that we define Nl and N2 fuzzy sets to cover the domains of XI and 22, respectively, 
and that the fuzzy rule base of @(x) consists of Nl x N2 rules. Let the l'th rule in 
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the fuzzy rule base be 

IF XI is  A! and x2 is  A;, T H E N  y is  B' (22.3) 

Then we say that the point (xl, x2) in the phase plane belongs to rule I* if it holds 
that 

PAP (XI ) * PA? ( ~ 2 )  2 PA; (XI) * PA; ( ~ 2 )  (22.4) 
for all 1 # l*, where * represents t-norm. 

Consider the fuzzy rule base in Fig.22.1, where Nl = N2 = 5 and the fuzzy 
rule base contains 25 rules. As shown in Fig.22.1, the state space of interest is 
partitioned into 25 regions, with each region belonging to a rule. For a given initial 
condition, the closed-loop system trajectory of (22.1)-(22.2) can be mapped onto 
the partitioned state space of Fig. 22.1. A trajectory corresponds to a sequence 
of rules that fire along the trajectory; this sequence of rules is called the linguistic 
trajectory, corresponding to the state trajectory. For the trajectory in Fig. 22.1, 
the corresponding linguistic trajectory is 

Linguistic trajectory = (rulel6, rule21, rule22, rule23, rule24, rulel9, rulel4, 

rule9, rule4, ruEe3, rule2, rule7, rulel2, rulel7, 

rule18, rulel3) (22.5) 

Figure 22.1. An example of linguistic trajectory. 

By modifying the rules in the linguistic trajectory, we can change the corre- 
sponding state trajectory. For example, if we feel that the state trajectory in Fig. 
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22.1 converges too slowly in the early stage, we may modify, for example, rule 22 
and rule 23 such that the convergence becomes faster. This can be done by noticing 
that the tangent vector of the state trajectory equals the summation of vector field 
f (x) and vector field b@(x), as shown in Fig. 22.2. If the point x in Fig. 22.2 
belongs to rule 23, then by increasing the center value of the THEN-part fuzzy set 
of rule 23, we can increase the value of b+(x) at  this point and therefore speed 
up convergence. The advantage of the phase plane analysis is that it helps us to 
identify the rules that influence the behavior of the trajectory, so that we only need 
to modify these rules to achieve the desired behavior. 

Figure 22.2. The state trajectory moves along the direc- 
tion of the vector field f (x) + b@(x). 

For the closed-loop fuzzy control system (22.1)-(22.2), we should pay special 
attention to the subspace @(x) = 0, which is a line in the phase plane. This line 
separates the phase plane into positive and negative control regions. It also is called 
the switching line because when the state trajectory goes across this line, the control 
changes from positive to negative and vice versa. When the state vector is far away 
from the switching line, the control vector b@(x) usually has greater influence on 
the closed-loop system than the plant component f (x). When the state vector gets 
closer to the switching line, b@(x) becomes smaller so that f (x) has more influence 
on the closed-loop system. The relationship between b@(x) and f (x) determines 
the behavior of the closed-loop system. Two situations are of most interests to us: 

Stable closed-loop systems. This is often the case where the open-loop system 
x = f (x) is stable and the control u = @(x) tries to lead the system trajectory 
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towards the switching line @(x) = 0. When the trajectory approaches the 
switching line, the plant component f (x) has a greater influence, which makes 
the trajectory converge to the equilibrium point. See Fig. 22.3 for an example. 

Figure 22.3. An example of stable closed-loop system. 

Limit cycles. This may be the case when the open-loop system x = f(x) 
is unstable and the control u = @(x) tries to stabilize the system. When 
the state is far away from the switch line @(x) = 0, the control cP(x) has a 
greater influence so that the state trajectory converges towards the switching 
line. When the state trajectory moves near the switching line, the unstable 
plant component f (x) has a greater influence, which makes the state trajectory 
diverge away from the equilibrium point. This interaction between the control 
and the plant components makes the state oscillate around the equilibrium 
point and a limit cycle is thus formed. Fig. 22.4 shows an example. 

Although the phase plane analysis is qualitative, it is helpful to characterize 
the dynamic behavior of a fuzzy control system. It also can serve as the basis for 
adequate selection or modification of the rules. 

22.2 Robustness Indices for Stability 

We know that a linear control system is stable if the eigenvalues of the closed-loop 
system are in the open left-half complex plane. If the eigenvalues are close to the 
imaginary axis, then small changes of the parameters may move some eigenvalues 



Sec. 22.2. Robustness Indices for Stability 281 

Figure 22.4. An example of limit cycle. 

to the right-half plane and cause instability. Therefore, the further away the eigen- 
values are from the imaginary axis, the more robust the stability is. So the distance 
of the smallest eigenvalue to the imaginary axis can be used as a measure of the ro- 
bustness of the system's stability. In this section, we generalize this kind of analysis 
to fuzzy control systems and establish some robustness indices for stability. We will 
consider the one-dimensional case first to introduce the basic concepts, and then 
extend them to the n-dimensional case. 

22.2.1 The One-Dimensional Case 

Consider the fuzzy control system (22.1)-(22.2) with x E R be a scalar and b = 1. 
Suppose that the f (x) is a monotone and increasing function with f (0) = 0, and 
that the fuzzy controller @(x) satisfies @(0) = 0. The equilibrium point of the 
closed-loop system is determined by 

Since f (0) = cP(0) = 0, the origin is an equilibrium point. For this equilibrium 
point to be stable, a sufficient condition is 

This can be proven by using the Lyapunov Linearization Theorem (Vidyasagar 
[1993]). Consequently, the closed-loop system (22.1)-(22.2) is globally stable if the 
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following two conditions are satisfied: 

Condition 1 : f l ( 0 )  + G1(0) < 0 (22.8) 
Condit ion 2 : l@(x)l < I f ( x ) I ,  V x  # 0 (22.9) 

Condition 1 ensures that the origin is a stable equilibrium point, while Condition 
2 guarantees no intersection of curves @ ( x )  and - f ( x )  and therefore prevents the 
appearance of other equilibrium points. 

If stability is lost, then either the equilibrium at the origin becomes unstable, 
or new equilibrium points are produced due to the intersection of @ ( x )  and - f ( x ) .  
Referring to (22.8) we see that the number 

can be used to measure the robustness of stability of the equilibrium at the origin. 
The larger the value of 4,  the more robust the stability of the origin. I1 of (22.10) 
is our first robustness index for stability of the fuzzy control system. 

Similarly, a measure can be associated with Condition 2. This measure should 
correspond to the minimum distance between @ ( x )  and - f ( x ) ,  that is, minl@(x) + 
f ( $ ) I .  However, since m i n l @ ( x )  + f (x)l  equals zero when x = 0 ,  the min should 
be taken over the range that excludes a neighborhood of the origin. This gives our 
second robustness index for stability 

I 2  = min I @ ( % )  + f (x ) l  (22.11) 
xER-(-a,a) 

where a is a positive constant. The larger the value of 12, the more robust the 
stability of the fuzzy control system. 

22.2.2 T h e  n-Dimensional Case 

Let us start with n = 2 and then generalize to arbitrary n. Assume that f ( 0 )  = 0 
and @ ( O )  = 0 ,  so the origin is an equilibrium point of the closed-loop system (22.1)- 
(22.2). From the Lyapunov Linearization Theorem (Vidyasagar [1993]) we know 
that the origin is stable if the two eigenvalues of the linearized system around the 
origin have negative real parts. Generally, there are two ways in which the system 
can become unstable: 

A real eigenvalue crosses the imaginary axis and acquires a positive sign. This 
is called static bifurcation. 

A pair of complex eigenvalues cross the imaginary axis and both of them take 
positive real parts. This is called Hopf bifurcation. 

We now examine under what conditions these two bifurcations may occur. 
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Let 

be the Jacobian matrix of f (x) + @(x) at the origin. Then, the eigenvalues of the 
linearized system at the origin are the solution of the characteristic equation 

A static bifurcation is produced when a real eigenvalue crosses the imaginary axis, 
that is, when one of the roots of (22.13) is zero. This will happen, as we can see from 
(22.13), only when alla22 - al2a21 = 0. The larger the value of lallaz2 - al2aZ11, 
the further away the system is from static bifurcation. Therefore, we define 

as a robustness index for stability for the second-order fuzzy control system. Simi- 
larly, a Hopf bifurcation may occur when the real parts of the two complex eigenval- 
ues equal zero. From (22.13) we see that this will happen only when all  + a22 = 0. 
The larger the value of la11 +azz[, the more unlikely the Hopf bifurcation. Therefore, 
we define 

I: = la11 +a221 = Itr(J)I (22.15) 

as another robustness index. In summary, the larger the values of Il and I:, the 
more robust the stability of the fuzzy control system is. 

Similar to the one-dimensional case, stability may be lost when the vector field 
of the fuzzy controller b*(x) compensates exactly the vector field of the plant f (x). 
Let b = (bl , bz) and f (x) = (fl (x), f2 (x)), then the compensation of the vector 
fields of the plant and the controller can occur only in the region of the state space 
where the plant component has the direction (bl, bz),  that is, in the region defined 
by 

Similar to the I2 of (22.11) for the one-dimensional case, we define the robustness 
index as 

I 2  = min If(x) + b@(x)l 
xEC-B 

(22.17) 

where B = {x E R211x(2 5 a}  is a ball around the origin. 

For the general n > 2 cases, let 

be the Jacobian matrix of the closed-loop system around the origin and 
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be its characteristic polynomial. Similar to the n = 2 case, an = 0 may cause static 
bifurcation. Therefore, we define 

as a robustness index. Similar to I; of (22.15), we can define a robustness index for 
Hopf bifurcation. Finally, the generalization of 1 2  (22.17) to the n > 2 case can be 
done by noticing that the subspace C of (22.16) now becomes 

Example 22.1. Consider the fuzzy control system 

The Jacobian matrix of this system at  the origin is 

If there is no control, that is, if @(xl, x2) = 0, then the robustness indices I; and 
I: are 

I1 = 12.74, 1; = 2.22 (22.25) 

With fuzzy controller @(XI, z2), these indices become 

Therefore, if we design the fuzzy controller such that ~ / x , = x 2 = o  < 0 and 

~ / x l = x 2 = 0  < 0, then the closed-loop fuzzy control system will be more robust 
than the uncontrolled open-loop system. 

22.3 Hierarchical Fuzzy Control 

22.3.1 The Curse of Dimensionality 

In Chapters 10 and 11 we saw that in order to design a fuzzy system with the 
required accuracy, the number of rules has to increase exponentially with the number 
of input variables to the fuzzy system. Specifically, suppose there are n input 
variables and m fuzzy sets are defined for each input variable, then the number of 
rules in the fuzzy system is mn. For large n, mn is a huge number. In practice, 
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it is not uncommon to have, say, five input variables. With n = 5 and m = 3 
(usually, at  least three fuzzy sets should be defined for each variable), mn = 243; if 
m = 5, which is more likely than m = 3, we have mn = 3120. It is impractical to 
implement a fuzzy system with thousands of rules. A serious problem facing fuzzy 
system applications is how to deal with this rule explosion problem. 

In fact, it is a common phenomenon that the complexity of a problem increases 
exponentially with the number of variables involved; this is not unique to fuzzy 
systems. This phenomenon was identified by Bellman as "the curse of dimension- 
ality." Some approaches have been proposed to deal with this difficulty; using the 
hierarchical fuzzy system is one approach. We will see that the hierarchical fuzzy 
system has the nice property that the number of rules needed to the construct the 
fuzzy system increases only linearly with the number of variables. 

22.3.2 Construction of the Hierarchical Fuzzy System 

The idea of the hierarchical fuzzy system is to put the input variables into a col- 
lection of low-dimensional fuzzy systems, instead of a single high-dimensional fuzzy 
system as is the usual case. Each low-dimensional fuzzy system constitutes a level 
in the hierarchical fuzzy system. Suppose that there are n input variables X I ,  ..., x,, 
then the hierarchical fuzzy system is constructed as follows: 

The first level is a fuzzy system with n l  input variables X I ,  ..., x,, which is 
constructed from the rules 

IF x1 i s  A: and . . -  and x,, i s  A:,, T H E N  yl i s  ~4 (22.27) 

where 2 5 nl  < n, and 1 = 1,2, ..., MI. 

The i'th level (i > 1) is a fuzzy system with ni + 1 (ni 2 1) input variables, 
which is constructed from the rules 

I F  XIV~+I is AL;+, and .. . and xiVi+ni i s  Ahi+,, and yiPl i s  c:-~, 
T H E N  yi i s  ~f (22.28) 

where Ni = nj ,  and 1 = 1,2, ..., Mi. 

L The construction continues until i = L such that C j = ,  n j  = n, that is, until 
all the input variables are used in one of the levels. 

We see that the first level converts n l  variables X I ,  ..., x,, into one variable 
y1, which is then sent to the second level. In the second level, other na variables 
xnl+l, ..., x,*+,~ and the variable yl are combined into another variable yz, which 
is sent to the third level. This process continues until all the variables $1, ..., x, are 
used. 
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A special case of the hierarchical fuzzy system is to choose n l  = 2 and ni = 1 for 
i = 2,3, ... , L. In this case, all the fuzzy systems in the hierarchy have two inputs, 
and there are L = n - 1 levels. This special hierarchical fuzzy system is illustrated 
in Fig. 22.5. 

fuzzy syste A 
fuzzy syste 

fuzzy syste 

4 
fuzzy syste + A1 
Yn-2 

... ... 

Figure 22.5. An example of hierarchical fuzzy system 
with nl = 2 and ni = 1 for i = 2,3, ..., n - 1. This hi- 
erarchical fuzzy system consists of n - 1 two-input fuzzy 
systems. 

Next, we study the properties of the hierarchical fuzzy system. 

22.3.3 Properties of the Hierarchical Fuzzy System 

We now show that the number of rules in the hierarchical fuzzy system is a linear 
function of the number of input variables (Theorem 22.1) and that the rule number 
reaches its minimum in the special case of Fig. 22.5 (Theorem 22.2). 

Theorem 22.1. Let n, ni and L be the same as in the design of the hierarchical 
fuzzy system. Suppose that m fuzzy sets are defined for each variable, including the 
input variables X I ,  ..., xn and the intermediate variables yl, ..., y ~ ,  and that the fuzzy 
system in the i'th level (i = 2, ..., L) is constructed from mnt+' rules (a complete 
fuzzy rule base) and for the first level the rule number is mnl. If n1 = ni + 1 = c 
(constant) for i = 2,3, ..., L, then the total number of rules in the whole hierarchical 
fuzzy system is 

mC 
M = -(n- 1) (22.29) 

c - 1  
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Proof: Obviously, we have 

Since n = c:', ni = c + ~ : , ( c  - 1) = LC - L + 1, we have 

Substituting (22.31) into (22.30), we obtain (22.29). 

Since 5 is a constant, we see from (22.29) that the number of rules in the 
hierarchical fuzzy system increases linearly with the number of input variables. For 
the case of m = 3,c = 2 and n = 5, we have M = 3,4 = 36; if we use the 
conventional fuzzy system, the number of rules is mn = 35 = 243. The reduction of 
rules is even greater for larger m and n. 

Finally, we show that the rule number M reaches its minimum when c = 2. 

Theorem 22.2. Let the assumptions in Theorem 22.1 be true. If m 2 2, then 
the total number of rules M of (22.29) is minimized when c = 2, that is, when the 
fuzzy systems in all the levels have two inputs as shown in Fig. 22.5. 

The proof of this theorem is left as an exercise. 

22.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Phase plane analysis of second-order fuzzy control systems, including the con- 
cept of linguistic trajectory and how to use it to modify the rules. 

The definitions and meanings of various robustness indices for stability. 

The construction and basic properties of the hierarchical fuzzy system. 

The concept of linguistic analysis for fuzzy control systems was proposed by 
Braae and Rutherford [1979]. Stability indices for fuzzy control systems were stud- 
ied in Aracil, Ollero, and Garcia-Cerezo [1989]. The book Driankov, Hellendoorn 
and Reinfrank [I9931 also contains qualitative analysis of fuzzy control systems and 
a discussion on the robustness indices. Hierarchical fuzzy systems were proposed 
by Raju, Zhou, and Kisner [1991]. It was proven in Wang [I9961 that hierarchical 
fuzzy systems also are universal approximators. 
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22.5 Exercises 

Exercise 22.1. Show that the nonlinear system 

converges to a limit cycle no matter where the initial state is. 

Exercise 22.2. Design a 25-rule fuzzy controller for the inverted pendulum 
system in Fig. 1.9 and determine the linguistic trajectories for initial conditions 
( ~ ( o ) ,  e(0)) = (loo, O),  (5O, 0) and (-8O, 0). 

Exercise 22.3. Design a 25-rule fuzzy controller for the ball-and-beam sys- 
tem in Fig. 16.7 and determine the linguistic trajectories for initial conditions 
(r(O), O(0)) = (1, 0°), (1,10°) and (-1,5O). 

Exercise 22.4. Design the fuzzy system @(x1,x2) in Example 22.1 such that 
the closed-loop system is more robust than the open-loop system. 

Exercise 22.5. Consider the hierarchical fuzzy system in Fig. 22.5 with n = 3. 
Let g(xl , x2, x3) be an unknown function, but we kuow its values at  (XI, 2 2 ,  x3) = 
(e,,e,,ek) for i , j , k =  1,2 ,..., 6, wheree, = 0.2(i-1). Let fl(x1,x2) and fi(y1,xs) 
be the two fuzzy systems and f (xl, 2 2 ,  x3) = f2[f1 (21, x2), x3] be the hierarchical 
fuzzy system. Design fi and f2  such that f (e,, e,,ek) = g(e,, e,,ek) for i, j ,  k = 
1 ,2  ,..., 6. 

Exercise 22.6. Use the ideas in Exercise 22.5 and Chapter 10 to prove that 
hierarchical fuzzy systems are universal approximators. 

Exercise 22.7. Prove Theorem 22.2. 



Part V 

Adaptive Fuzzy Control 

Fuzzy controllers are supposed to work in situations where there is a large un- 
certainty or unknown variation in plant parameters and structures. Generally, the 
basic objective of adaptive control is to maintain consistent performance of a system 
in the presence of these uncertainties. Therefore, advanced fuzzy control should be 
adaptive. 

The basic configuration of an adaptive fuzzy control system is shown in Fig. 
23.1. The reference model is used to specify the ideal response that the fuzzy 
control system should follow. The plant is assumed to contain unknown components. 
The fuzzy controller is constructed from fuzzy systems whose parameters 0 are 
adjustable. The adaptation law adjusts the parameters 8 online such that the plant 
output y (t) tracks the reference model output y,(t). 

From Fig. 23.1 we see that the main differences between adaptive fuzzy control 
systems and nonadaptive fuzzy control systems are: (i) the fuzzy controller in the 
adaptive fuzzy control system is changing during real-time operation, whereas the 
fuzzy controller in the nonadaptive fuzzy control system is fixed before real-time 
operation; and (ii) an additional component, the adaptation law, is introduced to 
the adaptive fuzzy control system to adjust the fuzzy controller parameters. 

The main advantages of adaptive fuzzy control over nonadaptive fuzzy control 
are: (i) better performance is usually achieved because the adaptive fuzzy controller 
can adjust itself to the changing environment, and (ii) less information about the 
plant is required because the adaptation law can help to learn the dynamics of the 
plant during real-time operation. 

The main disadvantages of adaptive fuzzy control over nonadaptive fuzzy control 
are: (i) the resulting control system is more difficult to analyze because it is not 
only nonlinear but also time varying, and (ii) implementation is more costly. 
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Ym 
Reference model 

r Plant 

(with adjustable 

Figure 23.1. The basic configuration of adaptive fuzzy 
control systems. 

In this part (Chapters 23-26), we will develop a number of adaptive fuzzy con- 
trollers for unknown or partially unknown nonlinear systems. In Chapter 23, we 
will classify the adaptive fuzzy controllers into three categories: indirect, direct, and 
combined indirect/direct schemes, and develop a basic indirect adaptive fuzzy con- 
troller. In Chapter 24, the basic elements in the direct and combined indirect/direct 
adaptive fuzzy controllers will be developed. Although the adaptive fuzzy controllers 
in Chapters 23 and 24 have nice convergence properties, it cannot be guaranteed 
that the resulting closed-loop nonlinear time-varying systems are globally stable. In 
Chapter 25, we will show how to use supervisory control and parameter projection 
to guarantee the uniform boundedness of all the variables. Finally, Chapter 26 will 
use the concept of input-output linearization to design adaptive fuzzy controllers 
for general nonlinear systems. 



Chapter 23 

Basic Adaptive Fuzzy 
Controllers I 

23.1 Classification of Adaptive Fuzzy Controllers 

Adaptive fuzzy control and conventional adaptive control have similarities and dif- 
ferences. They are similar in: (i) the basic configuration and principles are more 
or less the same, and (ii) the mathematical tools used in the analysis and design 
are very similar. The main differences are: (i) the fuzzy controller has a spe- 
cial nonlinear structure that is universal for different plants, whereas the structure 
of a conventional adaptive controller changes from plant to plant, and (ii) human 
knowledge about the plant dynamics and control strategies can be incorporated into 
adaptive fuzzy controllers, whereas such knowledge is not considered in conventional 
adaptive control systems. This second difference identifies the main advantage of 
adaptive fuzzy control over conventional adaptive control. 

In order to develop methods to incorporate human knowledge, we must first 
consider what types of human knowledge we are going to use. From a high-level 
conceptual point of view, any control system consists at least a plant and a con- 
troller. Therefore, human knowledge about a control system can be classified into 
two categories: plant knowledge and control knowledge. In our fuzzy control frame- 
work, these two types of human knowledge are specified as: 

a Plant  knowledge: Fuzzy IF-THEN rules that describe the behavior of the 
unknown plant (for example, we can describe the behavior of a car using the 
fuzzy IF-THEN rule: "IF you apply more force to the accelerator, THEN the 
speed of the car will increase," where "more" and "increase7' are characterized 
by fuzzy sets). 

Control  knowledge: Fuzzy control rules that state in which situations what 
control actions should be taken (for example, we often use the following fuzzy 
IF-THEN rule to drive a car: "IF the speed is low, THEN apply more force 
to  the accelerator," where "low" and "more" are characterized by fuzzy sets). 
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Depending upon the human knowledge used and the structure of the fuzzy con- 
troller, adaptive fuzzy control is classified into the following three categories: 

Indirect adaptive fuzzy control: The fuzzy controller comprises a number 
of fuzzy systems constructed (initially) from the plant knowledge. 

Direct adaptive fuzzy control: The fuzzy controller is a single fuzzy system 
constructed (initially) from the control knowledge. 

Combined indirect/direct fuzzy control: The fuzzy controller is a weighted 
average of the indirect and direct adaptive fuzzy controllers (therefore, both 
plant and control knowledge is used). 

In the next section, we will develop the basics of indirect adaptive fuzzy con- 
trol schemes; direct and combined indirectldirect fuzzy control will be studied in 
Chapter 24. 

23.2 Design of the Indirect Adaptive Fuzzy Controller 

23.2.1 Problem Specification 

Suppose that the plant is a n'th order nonlinear system described by the differential 
equation .-. 

where f and g are unknown functions, u E R and y E R are the input and output 
of the plant, respectively, and x = (xl, xz, ..., x , ) ~  = (x, 8,  ..., x(n-l))T E Rn is the 
state vector of the system that is assumed to be available for measurement. In order 
for (23.1) to be controllable, we require that g(x) # 0. Without loss of generality 
we assume that g(x) > 0. In the spirit of the nonlinear control literature (Isidori 
[1989]), these systems are in normal form and have the relative degree equal to n. 

The control objective is to  design a feedback controller u = u(x10) based on fuzzy 
systems and an adaptation law for adjusting the parameter vector 0, such that the 
plant output y follows the ideal output y, which and its time derivatives are known 
and bounded. 

Since the functions f (x) and g(x) in the plant are nonlinear and are assumed to 
be unknown, we are dealing with a quite general single-input-single-output nonlinear 
control problem. Therefore, in the control objective we did not insist that the plant 
output y should converge to the ideal output y, asymptotically; we only require 
that y follows y, as close as possible. In Chapters 25-26, we will introduce more 
advanced algorithms that guarantee the stability and convergence of the adaptive 
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fuzzy control systems. The goal of this chapter is to show the basic ideas of adaptive 
fuzzy control. 

Since we design an indirect adaptive fuzzy controller in this section, some plant 
knowledge is available. Specifically, we assume that a collection of fuzzy IF-THEN 
rules are available that describe the input-output behavior of f (x) and g(x); these 
rules are given as follows: 

IF XI i s  F: and  - . . and  xn is F,T, THEN f (x) i s  C' (23.3) 

which describe f (x), and 

IF xl is Gi and . . . and x, is G i ,  THEN g(x) i s  DS (23.4) 

which describe g(x), where I?, ,  C', Gz and Ds are fuzzy sets, r = 1,2, ..., Lf and 
s = 1 , 2  ,..., Lg. 

23.2.2 Design of the Fuzzy Controller 

If the nonlinear functions f (x) and g(x) are known, then we can choose the con- 
trol u to cancel the nonlinearity and design the controller based on linear control 
theory (for example, pole placement). Specifically, let e = y, - y = y, - x, 
e = (e, 6, ...,e(n-l))T and k = (k,, ..., k ~ ) ~  be such that all roots of the polynormal 
sn + tl sn-l +. . . + tn are in the open left-half complex plane, and choose the control 
law as 

Substituting (23.5) into (23.1), we obtain the closed-loop system governed by 

, Because of the choice of k, we have e(t) + 0 as t -i co, that is, the plant output y 
converges to the ideal output y, asymptotically. 

Since f (x) and g(x) are unknown, the ideal controller (23.5) cannot be imple- 
mented. However, we have the fuzzy IF-THEN rules (23.3)-(23.4) that describe the 
input-output behavior of f (x) and g(x). Therefore, a reasonable idea is to replace 
the f (x) and g(x) in (23.5) by fuzzy systems f(x) and g(x), which are constructed 
from the rules (23.3) and (23.4), respectively. Since the rules (23.3)- (23.4) provide 
only rough information about f (x) and g(x) , the constructed fuzzy systems f(x) 
and G(x) may not approximate f (x) and g(x) well enough. To improve the accu- 
racy of f (x) and ij(x), one idea is to leave some parameters in f (x) and j (x)  free 
to change during online operation so that the approximation accuracy improves 
over time. Let Of E RMf and Og E R M g  be the free parameters in f(x)  and ij(x), 
respectively, so we denote f(x) = f(xlOf) and G(x) = i(xlO,). Replacing the f (x) 
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and g(x) in (23.5) by the fuzzy systems f(xl19~) and tj(xlO,), respectively, we obtain 
the fuzzy controller 

This fuzzy controller is called the certainty equivalent controller, because if the f 
and g equal the corresponding f and g (which means that there is no uncertainty 
about f and g), then the controller us becomes the ideal controller u* of (23.5). 

To implement the controller (23.7), we must specify the detailed formulas of 
f(xlof) and lj(xl6,). Since the number of rules in (23.3) and (23.4) may be small, 
it is generally not sufficient to construct f"(x10~) and lj(xl0,) based only on the Lf 
rules in (23.3) and L, rules in (23.4). We should construct f(xldf) and i(xl6,) 
based on complete sets of rules that include the rules in (23.3) and (23.4) as speciaI 
cases. Specifically, f(xlOf) and g(xl6,) are constructed from the following two steps: 

Step 1. For variable xi (i = 1,2, ..., n), define pi fuzzy sets A: (16 = 
1,2, ...,pi), which include the Fir (r  = 1,2, ..., L f )  in (23.3) as special cases, 
and define qi fuzzy sets ~f~ (li = 1,2, ..., qi), which include the G: (s = 
1,2, ..., L,) in (23.4) as special cases. 

Step 2. Construct the fuzzy system f(xlOf) from the nyzl pi rules: 

IF x1 i s  A? and . . . and x, i s  A?, T H E N  f^ i s  E ' ~ ' . " ~  (23.8) 

where li = 1,2, ...,pi, i = 1,2, ..., n, and EZ1""- equals Cr if the IF part of 
(23.8) agrees with the IF part of (23.3) and equals some arbitrary fuzzy set 
otherwise. Similarly, construct the fuzzy system g(xJ8,) from the flyzl qi 
rules: 

IF x1 is B? and . . . and x, is ~ 2 ,  T H E N  lj i s  H ' ~ " " ~  (23.9) 

where li = 1,2, ..., qi, i = 1,2, ..., n, and H'~"" -  equals DS if the IF part of 
(23.9) agrees with the IF part of (23.4) and equals some arbitrary fuzzy set 
otherwise. Specifically, using the product inference engine, singleton fuzzifier 
and center average defuzzifier, we obtain 
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Let jj;'.."n and $ 1 "  9 be the free parameters that are collected into Of E ~nY-1 pi 

and 8, t R ~ : = I  " , respectively, so we can rewrite (23.10) and (23.11) as 

where <(x) is a ny=, pi-dimensional vector with its El . . . lhth element 

and 7 7 ( ~ )  is a ny=l qi-dimensional vector with its 11 . . . lhth element 

From Step 2 we see that some parameters in Of and 8, are chosen according 
to the rules (23.3)-(23.4), and the remaining parameters in Of and 8, are chosen 
randomly (or assuming some structure). Since the parameters and 8, will change 
during online operation, this parameter setting gives the initial parameters. Our 
next task is to design an adaptation law for Of and 8,, such that the tracking error 
e is minimized. 

23.2.3 Design of Adaptation Law 

Substituting (23.7) into (23.1) and after some manipulation, we obtain the closed- 
loop dynamics of the fuzzy control system as 

Let 

then the dynamic equation (23.16) can be rewritten into the vector form 

= Re f b{[.f(x(@f) - f (x)] + [g(xle,) - 9(x)1~1> (23.18) 
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Define the optimal parameters as 

B j = a r g  min [ sup  l . f ( ~ l 0 ~ ) - f ( x ) ~ ]  ofERn;=l Pi XERn 

8; = arg rnin 1 sup Iij(x/Bg) - g(x)lj egERn;=l Qi x€Rn 

thus f(xl0 j )  and g(xl0;) are the best (min-ma*) approximators of f (x) and g(x), 
respectively, among all the fuzzy systems in the form of (23.10) and (23.11). Define 
the minimum approximation error 

Using this w, we can rewrite (23.18) as 

Substituting (23.12) and (23.13) into (23.22), we obtain the following closed-loop 
dynamic equation that specifies explicitly the relationship between the tracking 
error e and the controller parameters Of and Bg: 

The task of an adaptation law is to determine an adjusting mechanism for Of and 
0,, such that the tracking error e and the parameter errors Of - 0 j  and 0, - 8; are 
minimized. 

To complete this task, consider the Lyapunov function candidate 

where yl and 72 are positive constants, and P  is a positive definite matrix satisfying 
the Lyapunov equation 

A ~ P + P A =  -Q (23.25) 

where Q is an arbitrary n x n positive definite matrix, and A  is given by (23.17). 
The time derivative of V along the closed-loop system trajectory (23.23) is 

To minimize the tracking error e and the parameter errors ef - 0 j  and 0, - 0;, 
or equivalently, to  minimize V, we should choose the adaptation law such that v 
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is negative. Since -keTpe is negative and we can choose the fuzzy systems such 
that the minimum approximation error w is small, a good strategy is to choose 
the adaptation law such that the last two terms in (23.26) are zero, that is, our 
adaptation law is 

This approach to designing the adaptation law is called the Lyapunou synthesis 
approach, because the goal is to minimize the Lyapunov function V. 

In summary, the whole indirect adaptive fuzzy control system is shown in Fig. 
23.2. It  should be remembered that the plant knowledge (fuzzy IF-THEN rules 
(23.3)-(23.4)) is incorporated through the initial parameters 0 (0) and Og (O), as 
shown in Step 2 of the design procedure for .f(xlOf) and jj(xl0,). 

Plant * 
x(")=f(~)+~(X)u, y=x 

Y Fuzzy controller 

uI=[$xlef)+y,(n)+kTel/p(xle,) 

Adaptation law 

Figure 23.2. The indirect adaptive fuzzy control system. 

23.3 Application to lnverted Pendulum Tracking Control 

We now apply the indirect adaptive fuzzy controller to the inverted pendulum sys- 
tem shown in Fig. 1.9 whose dynamics are characterized by (20.15)-(20.16). We 
choose kl = 2 and k2 = 1 (so that s2 + kls + k2 is stable), Q = diag(l0, lo), and 
solve the Lyapunov equation (23.25) t o  obtain the P as in (20.29). We now consider 
two examples: one without any plant knowledge (Example 23.1) and the other with 
some plant knowledge (Example 23.2). 
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Example 23.1. In this example, we assume that there are no linguistic rules 
(23.3) and (23.4). We choose pl = p2 = ql = q2 = 5, and All = A; = B: = 

z l f n  12 2 Bi with I L A : ( X I )  = ~xP[-(*)~], PA:(XL)  = ~xP[-(*) 1, ~ A ? ( x l )  = 

e ~ p [ - ( * ) ~ ] ,  pnl ( X I )  = e ~ p [ - ( - ) ~ ] ,  and pa; ( x i )  = e x ~ [ - ( - ) ~ ] ,  which 
cover the interval [ -r /6 ,  r / 6 ] .  Since the range of f ( X I ,  x2) is much larger than that 
of g(x l ,  x2 ) ,  we choose yl = 50 and 7 2  = 1. Figs. 23.3 and 23.4 show the closed-loop 
x1 ( t )  together with the ideal output ym(t) for the initial conditions x(0)  = (-6, o ) ~  
and x(0)  = (6,  o ) ~ ,  respectively. 

Figure 23.3. The state zl(t) (solid line) and its desired 
value y,(t) = $ s i n ( t )  (dashed line) for the initial condi- 
tion x(0) = (-G, o)* in Example 23.1. 

Example 23.2. Here we consider the same situation as in Example 23.1 except 
that there are some linguistic rules about f ( $ 1 ,  2 2 )  and g(x l ,  x2 )  based on the 
following physical intuition. First, suppose that there is no control; that is, u = 0. 
In this case the acceleration of the angle 0 = xl equals f ( X I ,  s2). Based on physical 
intuition we have the following observation: 

T h e  bigger the X I ,  the larger the f ( x 1 , ~ 2 )  (23.29) 

Our task now is to transform this observation into fuzzy IF-THEN rules about 
f ( X I ,  2 2 ) .  Since (x l  , x z )  = (0,O) is an (unstable) equilibrium point of the system, 
we have the first rule: 

R?) : I x  i s  F; and x2 i s  G, T H E N  f ( x l , x2 )  i s  near zero 
(23.30) 

where (i = 1,2,  j = 1,2, ..., 5) equal the A: defined in Example 23.1, and "near 
zero" is a fuzzy set with center at zero. From Fig. 1.9 we see that the acceleration 
of X I  is proportional to the gravity mgsin(x l ) ;  that is, we have approximately that 
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Figure 23.4. The state xl(t) (solid line) and its desired 
value y,(t) = &sin(t) (dashed line) for the initial condi- 
tion x(0) = (6, o ) ~  in Example 23.1. 

f ($1 ,  2 2 )  = asin(x l ) ,  where a is a constant. Clearly, f (x l  , x2)  achieves its maxi- 
mum at x1 = n /2 ;  thus, from (20.16) we approximately have a = 16. Therefore, 
we obtain the following fuzzy IF-THEN rules for f ( x l ,  x2) :  

R?) : I F  X I  i s  F: and x2 i s  F;, T H E N  f (x l ,x2)  i s  near - 8,(23.31) 

RF)  : I F  x1 i s  F i  and 5 2  i s  F;, T H E N  f ( x l , x 2 )  i s  near - 4,(23.32) 

R : I F  X I  i s  Ff and x2 i s  F;, T H E N  f (x l ,x2)  i s  near 4, (23.33) 

R : I F  xl i s  Ff and x2 i s  F;, T H E N  f ( x l ,  x2) i s  near 8, (23.34) 

where F i  ( i  = 1,2, j = 1,2, ..., 5)  are identical to the corresponding ~i in Example 
23.1, and the values after near are determined according to 16sin(n/6) = 8 and 
8sin(~/12)=4.  Also based on physical intuition we have that f ( X I ,  2 2 )  is more sen- 
sitive to X I  than to 2 2 ,  we therefore extend the rules (23.30)-(23.34) to the rules 
where xz is any Fi for j = 1,2, ..., 5. In summary, the final rules characteriz- 
ing f ( x l ,  x2 )  are shown in Fig.23.5. These rules are used to determine the initial 
parameters Of (0). 

Next, we determine fuzzy IF-THEN rules for g(xl,x2) based on physical intu- 
ition. Since g(x1,x2) determines the strength of the control u on the system and 
clearly this strength is maximized at xl = 0 ,  we have the following observation: 

The smaller the X I ,  the larger the g(x1,xz). (23.35) 

Similar to the way of constructing the rules for f ( X I ,  x2), we transfer the observation 
(23.35) into 25 fuzzy rules for g(x1, x2), which are shown in Fig. 23.6. 
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Figure 23.5. Linguistic fuzzy IF-THEN rules for 
f ( 2 1 , ~ 2 ) .  

Figure 23.6. Linguistic fuzzy IF-THEN rules for 
9 ( 2 1 , 2 2 ) .  
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Figs.23.7 and 23.8 show the closed-loop x l ( t )  together with the ideal output 
y,(t) for the two initial conditions x(0) = (- 6, o ) ~  and x(0) = (6, respec- 
tively, after the fuzzy IF-THEN rules in Figs. 23.5 and 23.6 are incorporated. 
Comparing these results with those in Example 23.1, we see that the initial parts 
of control are apparently improved after incorporating these rules. 

Figure 23.7. The state xl(t) (solid line) and its desired 
value ym(t) = g s i n ( t )  (dashed line) for the initial condi- 
tion x(0) = (- $, o)* in Example 23.2. 

Figure 23.8. The state xl(t) (solid line) and its desired 
value ym(t) = $sin(t) (dashed line) for the initial condi- 
tion x(0) = (&, o ) ~  in Example 23.2. 
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23.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The motivation and classification of adaptive fuzzy controllers. 

Design of the indirect adaptive fuzzy controller using the certainty equivalent 
principle and the Lyapunov synthesis approach. 

How to apply the indirect adaptive fuzzy controller to the inverted pendulum 
tracking control problem. 

There are many good textbooks on adaptive control, for example, Narendra 
and Annaswamy [I9891 and Wstrom and Wittenmark [1995]. Adaptive control of 
nonlinear systems is currently an active research field and some earlier papers were 
Sastry and Isidori [1989], Narendra and Parthasarathy [1990], and Sanner and Slo- 
tine [1991]. The approach in this chapter is taken from Wang [1994a]. 

23.5 Exercises 

Exercise 23.1. Consider the control of a mass on a frictionless surface by a 
motor force u, with the plant dynamics being 

The objective is to design a controller u such that x(t) will converge to the reference 
signal y,(t), which is governed by 

Consider the following two cases: 

(a) m is known, and design a nonadaptive controller to achieve the objective. 

(b) m is unknown, and design an adaptive controller to achieve the objective. 
Draw the block diagram of this adaptive control system, and discuss the intuitive 
reasonableness of the adaptation law. 

Exercise 23.2. Consider the first-order nonlinear system 

where f (x) is unknown. Design an adaptive fuzzy controller u such that x(t) follows 
the desired state xd(t) = sin(t) as t tends to infinity. Under what conditions can 
you guarantee that the tracking error xd(t) - x(t) converges to zero as t goes to 
infinity? 
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Exercise 23.3. Suppose that the plant knowledge provides very good estimates 
of f and g and we do not want to change them during online adaptation. Modify 
the indirect adaptive fuzzy control scheme in this chapter to achieve this objective. 

Exercise 23.4. Consider the adaptation law (23.27) and (23.28) and discuss 
intuitively why parameter estimation can be easier on unstable systems than on 
stable systems. 

Exercise 23.5. Consider the system 

where e , 0  E R, and w ( t )  is bounded. Show that e ( t )  + 0 as t + m. Is the 
equilibrium at origin asymptotically stable? 

Exercise 23.6. Repeat the simulations in Section 23.3 and simulate more cases. 



Chapter 24 

Basic Adaptive Fuzzy 
Controllers I I 

24.1 Design of the Direct Adaptive Fuzzy Controller 

24.1.1 Problem Specification 

Suppose that the plant is represented by 

x(") = f (x, 2 ,  ..., x(~- ' ))  + bu 

y = x  

where f is an unknown function and b is an unknown positive constant. The control 
objective remains the same as in the indirect adaptive fuzzy control; that is, design 
a feedback controller u = u(xl8) based on fuzzy systems and an adaptation law 
for adjusting the parameter vector 8, such that the plant output y follows the ideal 
output y, as close as possible. The main difference lies in the assumption about the 
available human knowledge. Specifically, instead of knowing the plant knowledge 
(23.3) and (23.4), here we are provided with some control knowledge; that is, the 
following fuzzy IF-THEN rules that describe human control actions: 

IF XI i s  PT and . . . and x, i s  P:, THEN u i s  QT (24.3) 

where P[ and QT are fuzzy sets in R, and r = 1,2, ..., L,. The fuzzy controller should 
be designed in such a way that the rules (24.3) can be naturally incorporated. 

24.1.2 Design of the Fuzzy Controller 

To incorporate the rules (24.3), a natural choice is to use a single fuzzy system as 
the controller, that is, the fuzzy controller in this case is 
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where UD is a fuzzy system and 6 is the collection of adjustable parameters. Specif- 
ically, the fuzzy system uD(x18) is constructed from the following two steps: 

S t e p  1. For each variable xi (i = 1,2, ..., n), define mi fuzzy sets Al," (li = 
1,2, ..., mi), which include the P[ ( r  = 1,2, ..., L,) in (24.3) as special cases. 

S t e p  2. Construct the fuzzy system uo(xl8) from the following nyzl mi 
rules: 

IF x1 is A$ and . . . and x, is A?, THEN UD is sll""" (24.5) 

where li = 1,2, ..., mi, i = 1,2,  ..., n, and S1l"'ln equals the QT in (24.3) if the 
IF part of (24.5) agrees with the IF part of (24.3) and equals some arbitrary 
fuzzy set otherwise. Specifically, using product inference engine, singleton 
fuzzifier and center average defuzzifier, we obtain 

Choose f$"'ln as adjustable parameters and collect them into the vector 8 E 
~ ~ z l " i ,  the fuzzy controller becomes 

u ~ ( x l 8 )  = eTt(x) (24.7) 

where t (x )  is the same as in (23.14) except that the pi there is now replaced 
by mi. 

From Step 2 we see that the initial values of some parameters in 8 are chosen 
according to the rules (24.3), and the remainders are chosen randomly (or according 
to some strategy). Therefore, the control knowledge (24.3) is incorporated into the 
the fuzzy controller through the setting of its initial parameters. 

24.1.3 Design of Adaptation Law 

Let u* be the same ideal control (23.5) as in Section 23.2, with g(x) = b. Substi- 
tuting (24.4) into (24.1) and by rearrangement, we obtain 

e(,) = -kTe + b[u* - uD(x18)] (24.8) 

Let A be as defined in (23.17) and b = (0, ..., 0, b)T, the closed-loop dynamics can 
be written into the vector form 

Define the optimal parameters 

8* = arg min I 
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and the minimum approximation error 

Using (24.11) and (24.7), we can rewrite the error equation (24.9) as 

Consider the Lyapunov function candidate 

where P is a positive definite matrix satisfying the Lyapunov equation (23.25), and 
y is a positive constant (recall that b > 0 by assumption, so V is positive). Using 
(24.12) and (23.25), we have 

Let pn be the last column of P, then from b = (0, ..., 0, b)T we have e T P b  = eTpnb. 
So (24.14) can be rewritten as 

If we choose the adaptation law 

then 
1 ,  v = - -e Qe - eTpnbw 
2 

(24.17) 

Since Q > 0 and w is the minimum approximation error, we can hope that by 
designing the fuzzy system uD(x18) with a sufficiently large number of rules, the w 
would be small enough such that leTpnbwl < $eTQe, which results in v < 0. 

In summary, the whole direct adaptive fuzzy control system is shown in Fig. 24.1. 
The fuzzy control rules (24.3) (control knowledge) are incorporated by choosing the 
initial parameters of the fuzzy controller according them, as shown in Step 2 of the 
design procedure for the fuzzy controller. 

24.1.4 Simulations 

Example 24.1. Consider the first-order nonlinear system (19.31). Our objective is 
to use the direct adaptive fuzzy controller to regulate the state x(t) to  zero; that is, 
we have y, = 0. It is clear that the plant (19.31) is unstable if the control equals 
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Plant 
x(")=f(x)+ bu, y=x 

Fuzzy controller 

initial 8(0) Adaptation law 

Figure 24.1. The direct adaptive fuzzy control system. 

zero. Indeed, if u(t) - 0, then 2 = - > 0 for x > 0, and x = - < 0 for x < 
0. We choose y = 1 and define six fuzzy sets N3, N2, N1, PI, P2, and P 3  over the 
interval [-3,3] with membership functions pN3(x) = l/(l+exp(5(x+2))), p ~ z ( x )  = 
exp(-(x+ 1.5)~), ~ N I ( X )  = exp(-(x+0.5)~), ppl(x) = exp(-(x - 0.5)~) ,  pp2(x) = 
exp(-(x - 1.5)2), and pp3(x) = 1/(1 + exp(-5(x - 2))), which are shown in Fig. 
24.2. We consider two cases: (i) there are no fuzzy control rules, and the initial 
Oi(O)'s are chosen randomly in the interval [-2,2], and (ii) there are two fuzzy 
control rules: 

IF x is  N2, T H E N  u(x) is P B  (24.18) 

IF x is  P2,  T H E N  u(x) is  N B  (24.19) 

where pPB (u) = exp(-(u - 2)2), and ~ N B  (u) = exp(-(u + 2)2). These two rules 
are obtained by considering the fact that our problem is to control x(t) to zero; 
therefore, if x is negative, then the control u(x) should be positive big (PB) so that 
it may happen that x > 0 (see (19.31)). On the other hand, if x is positive, then 
the control u(x) should be negative big (NB) so that it may happen that x < 0. 
Figs.24.3 and 24.4 show the x(t) for the cases without and with the linguistic control 
rules (24.18) and (24.19), respectively, for the initial condition x(0) = 1. We see 
from Figs. 24.3 and 24.4 that: (a) the direct adaptive fuzzy controller could regulate 
the plant to the origin without using the fuzzy control rules (24.18) and (24.19), 
and (b) by using the fuzzy control rules, the speed of convergence became much 
faster. 
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Figure 24.2. Membership functions defined over the state 
space for Example 24.1. 

Figure 24.3. Closed-loop system state x ( t )  using the di- 
rect adaptive fuzzy controller for the plant (19.31) without 
incorporating the fuzzy control rules. 
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Figure 24.4. Closed-loop system state x ( t )  using the di- 
rect adaptive fuzzy controller for the plant (19.31) after 
incorporating the fuzzy control rules (24.18) and (24.19). 

Example 24.2. In this example, we consider the Duffing forced-oscillation 
system: 

If the control u(t) equals zero, the system is chaotic. The trajectory of the system 
with u(t) 0 is shown in the (xl, x2) phase plane in Fig.24.5 for the initial condition 
xl(0) = x2(0) = 2 and time period to = 0 to tf = 60. We now use the direct 
adaptive fuzzy controller to control the state XI to track the reference trajectory 
y,(t) = sin(t). In the phase plane, this reference trajectory is the unit circle: 
y& + y& = 1. We choose kl = 2, k2 = 1, y = 2, and Q = diag(l0,lO). We use the 
six fuzzy sets shown in Fig. 24.2 for xl and xz, and assume that there are no fuzzy 
control rules. The closed-loop trajectory is shown in Fig. 24.6 for initial condition 
XI (0) = x2 (0) = 2 and time period from to = 0 to tf = 60. 

24.2 Design of the Combined Directllndirect Adaptive Fuzzy 
Controller 

The indirect adaptive fuzzy controller can make use of linguistic descriptions about 
the plant (plant knowledge), whereas the direct adaptive fuzzy controller can utilize 
linguistic control rules (control knowledge). In this section, we design the combined 
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Figure 24.5. Trajectory of the chaotic system (24.20) 
and (24.21) in the (x1,x2) phase plane with u(t )  = 0 and 
x1(0) = x2(0) = 2. 

Figure 24.6. Closed-loop system trajectory (XI (t), xz (t)) 
using the direct adaptive fuzzy controller for the chaotic 
system (24.20) and (24.21). 
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indirectldirect adaptive fuzzy controller that can incorporate both types of linguistic 
information. 

24.2.1 Problem Specification 

Consider the plant (24.1)-(24.2). For simplicity, assume that b = 1. Suppose that 
the following three pieces of information are available: 

Information 1: We know an approximate model of the plant; that is, we are 
given a function f ,  which is an estimate of the f in (24.1). 

Information 2: We are given a set of fuzzy IF-THEN rules describing the 
difference f - f̂  under various conditions; that is, we have 

IF XI i s  S{ and  . - .  and  x, i s  s;, THEN f - j i s  ~j (24.22) 

where S{ and Ej are fuzzy sets in R, and j = 1,2, ..., L,. 

a Information 3: We are given L, fuzzy IF-THEN rules in the form of (24.3), 
which describe recommended control actions under various conditions. 

Information 1 represents mathematical knowledge about the plant (obtained 
according to system configuration and physical laws), and Informations 2 and 3 are 
linguistic knowledge about the approximate mathematical model and the control 
actions, respectively. Our objective is to combine these three pieces of information 
into a controller and to design an adaptation law for the adjustable parameters in 
the controller, such that the closed-loop output y(t) follows the ideal output y,(t). 

24.2.2 Design of the Fuzzy Controller 

Let k and e be as defined in Subsection 23.2.2. If f (x) is known, then we know 
from Subsection 23.2.2 that the optimal control 

u* = - f (x) + yk) + kTe (24.23) 

applied to (24.1) (with b = 1) guarantees y(t) + y,(t). Let fl(xl6'1) be a fuzzy 
system constructed from the rules including (24.22), then the best estimate of f  (x), 
based on Informations 1 and 2, is 

Hence, to utilize Informations 1 and 2, we should use the controller 

Since Information 3 consists of a set of fuzzy control rules, to  use it we should 
consider the controller 

~3 = . z ~ D ( x ~ ~ D )  (24.26) 
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where u~ is a fuzzy system constructed from the rules including (24.3). Therefore, 
a good choice of the final controller is a weighted average of ul2 and us, that is, the 
final controller is 

u = aul2 + (1 - a)u3 (24.27) 

where a E [O, 11 is a weighting factor. If the plant knowledge, that is, Informations 
1 and 2, is more important and reliable than the control knowledge Information 3, 
we should choose a larger a ;  otherwise, a smaller a should be chosen. 

The fuzzy systems f(xl0l) and u~ ( ~ 1 0 ~ )  are designed following the same steps as 
in Sections 23.2 and 24.1; we omit the details. In terms of the adjustable parameters 
BI and OD, we represent f(xl0I) and U D ( X ~ ~ D )  as 

where [(x) and ~ ( x )  are vectors of fuzzy basis functions. Our next task is, as usual, 
to design an adaptation law for 81 and 00,  such that the tracking error e would be 
as small as possible. 

24.2.3 Design of Adaptation Law 

Substituting (24.27) into (24.1) (with b = 1) and after some straightforward manip- 
ulation, we obtain the following error equation governing the closed-loop system 

where u* is given in (24.23), e = y, - y = y, - x, and e = (e, 6, ..., e(n-l))T. Let 
A and b be defined in (23.17), then (24.30) can be rewritten as 

Suppose that BI and OD are M- and N-dimensional vectors, respectively, and define 
their optimal values as 

0; = arg min [ sup 1 f (x)  + f(xl01) - f (x) I] 
OrERM XER" 

0 h = a r g  min sup I U * ( X ) - - U D ( ~ ~ ~ D ) ~  
~ D E R ~  I XERn 

Let w be the minimum approximation error defined by 

w = a[f^(x) + f (~10;) - f (x)] + (1 - a)[u* (x) - ~D(xl0h) l  (24.34) 

Using w and (24.28)-(29.29), we can rewrite the error equation (24.31) as 

6 = he + b[a(dr - B;)~J(x)  + (1 - a ) ( 0 ~  - B ~ ) ~ ~ ( X )  + W] (24.35) 
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Consider the Lyapunov function candidate 

where P > 0 satisfies the Lyapunov equation (23.25), and yl, 7 2  are positive con- 
stants. Using (24.35) and (23.25), we have 

Therefore, if we choose the adaptation law 

then we have 

Since w is the minimum approximation error, (24.40) is the best we can get. 

In summary, the combined directlindirect adaptive fuzzy control system is 
shown in Fig.24.7. We see from the figure that Information 1 is directly used 
,in the controller, and Informations 2 and 3 are incorporated throught the initial 
parameters eI (0) and OD (0) , respectively. 

24.2.4 Convergence Analysis 

Up to this point, we have developed the basic schemes of indirect, direct, and com- 
bined indirectldirect adaptive fuzzy controllers. We used the Lyapunov synthesis 
approach to design these adaptive fuzzy controllers, so that they are intuitively 
appealing. However, we did not analyze the performance of the resulting adaptive 
fuzzy control systems in detail. There are two fundamental issues in performance 
analysis: stability and convergence, where by stability we mean the boundedness of 
the variables involved (states, parameters, etc.), and by convergence we mean the 
convergence of the tracking error to zero. We now show in the following theorem 
that if the fuzzy control system in Fig. 24.7 is stable, then under mild conditions the 
tracking error will converge to zero. In the next chapter, we will develop approaches 
to achieve stability. 

Theorem 24.1. Consider the combined indirectldirect adaptive fuzzy control 
system in Fig. 24.7. If the state x, the parameters 01 and 80 ,  and the minimum 
approximation error w are bounded, then: 
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I FUZZY controller I I 

Adaptation law 

fiant and control 
knowledge 

Figure 24.7. The combined indirectldirect adaptive fuzzy 
control system. 

(a) The tracking error satisfies 

for all t 2 0, where a and b are constants, and w is the minimum approximation 
error defined by (24.34). 

(b) If w is squared integrable, that is, if Som lw(t)12dt < oo, then limt-tm le(t) 1 = 
0. 

Proof: (a) Let XQrnin be the minimum eigenvalue of Q. Then from (24.40) we 
have 

Integrating both sides of (24.42) and assuming that XQrnin > 1 (since Q is deter- 
mined by the designer, we can choose such Q), we have 



Sec. 24.3. Summary and Further Readings 315 

Define a = (Iv(o) I + suptto lv(t) 1 )  and b = A I P b 1 2 ,  X Q T ~ ~ ~ - 1  (24.43) becomes 
(24.41). (Note that sup,,, - IV(t) 1 is finite since e,  Or -8; and OD - 8; are all bounded 
by assumption.) 

(b) If w is squared integrable, then from (24.41) we conclude that e is also 
squared integrable. Since all the variables in the right-hand side of (24.35) are 
bounded by assumption, we have that e is also bounded. Using the Barbalat's 
Lemma (Sastry and Bodson [1989]) (If e is squared integrable and bounded and e 
is bounded, then 2imt,,le(t)l = 0), we have limt,,le(t)l = 0. 

Using the same ideas as in the proof of Theorem 24.1, we can prove that if all the 
variables in the indirect and direct adaptive fuzzy control systems in Figs. 23.2 and 
24.1 are bounded and the minimum approximation errors are squared integrable, 
then the tracking errors will converge to zero. 

24.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

How to design the direct adaptive fuzzy controller. 

How to combine the approximate mathematical model, linguistic model de- 
scription, and linguistic control rules into a single adaptive fuzzy controller 
(the combined indirectldirect adaptive fuzzy controller). 

Convergence analysis of the adaptive fuzzy control systems. 

The materials in this chapter are taken from Wang [1994a], where more simula- 
tion results can be found. Other adaptive fuzzy control approaches can be found in, 
for example, Spooner and Passino [1995], Johansen [1994], and Vandegrift, Lewis, 
Jagannathan, and Liu [1995]. 

24.4 Exercises 

Exercise 24.1. Consider the indirect adaptive fuzzy control system in Fig. 
23.2 and show that the tracking error of the closed-loop system satisfies the bound 
(24.41). 

Exercise 24.2. Show that the tracking error of the direct adaptive fuzzy control 
system in Fig. 24.1 satisfies the bound (24.41). 

Exercise 24.3. Suppose Informations 1 and 2 in Section 24.2 are replaced by 
a set of fuzzy IF-THEN rules describing the unknown function f .  Combine these 
rules with Information 3 into an adaptive fuzzy controller. 

Exercise 24.4. Suppose that the parameters in the membership functions p I ;  
A i 

in the fuzzy controller U D  of (24.6) are also adjustable parameters (so that the u~ 
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cannot be linear in the parameters 6 as in (24.7)). Design a direct adaptive fuzzy 
controller in this case. 

Exercise 24.5. Repeat the simulation in Fig. 24.3 with different initial condi- 
tions. 

Exercise 24.6. Simulate the combined indirectldirect adaptive fuzzy controller 
for the systems in Examples 24.1 and 24.2. 



Chapter 25 

Advanced Adaptive Fuzzy 
Controllers I 

In Chapters 23 and 24, we developed the basics of indirect, direct, and combined 
indirectldirect adaptive fuzzy controllers. The idea was to use the Lyapunov syn- 
thesis approach and the certainty equivalent principle. Although we did not provide 
much theoretical analysis, we proved in Theorem 24.1 that if all the variables in- 
volved are bounded and the minimum approximation error is squared integrable, 
the tracking error will converge to zero. Therefore, the key problems are: (i) how to 
guarantee the boundedness of all the variables, and (ii) how to make the minimum 
approximation error squared integrable. Since the fuzzy systems are universal ap- 
proximators, we can make the minimum approximation error arbitrarily small by 
using more rules to construct the fuzzy systems. The main objective of this chapter 
is to solve the first problem. In Sections 25.1 and 25.2, we will use supervisory 
control and parameter projection to guarantee the boundedness of the states and 
the parameters, respectively. 

25.1 State Boundedness By Supervisory Control 

25.1.1 For Indirect Adaptive Fuzzy Control System 

Consider the basic indirect adaptive fuzzy control system in Fig. 23.2; that is, the 
plant is (23.1)-(23.2), the controller is (23.7) with the fuzzy systems f* and given 
by (23.12) and (23.13), and the adaptation law is (23.27)-(23.28). Our task now is 
t o  make the state x bounded. 

We use the supervisory control idea in Chapter 20 for this task. Specifically, we 
append a supervisory controller us on top of the basic controller u~ of (23.7), so 
that the controller now becomes 

The us should be designed to: (i) guarantee the boundedness of x, and (ii) operate 
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in a supervisory fashion; that is, us should equal zero when the state x is well inside 
the stable range and is nonzero only when x tends to leave the stable range. We 
now design this us. 

Replacing u = u~ by u = u l  + us, the error equation (23.18) becomes 

Define 
1 

V - -eTpe  
e - 2  

(25.3) 

where P > 0 satisfies the Lyapunov equation (23.25). Since e = (y, - xl, y, - 
(n-1) T 

2 2 ,  ..., Ym -xn) and y,, $,, ..., y2-l)  are assumed to be bounded, the bounded- 
ness of Ve implies the boundedness of x = (xl , x2, . . . , x , ) ~ .  Thus, our task becomes 
to design the us such that Ve 5 V is guaranteed, where V is a given constant de- 
termined from the bound for x. From (25.3) we have (ve)ll2 2 (*)1/21e1 > 
(*)1/2(1~1 - Iyml), where Xpm,, is the minimum eigenvalue of P and y m  = 

(Y,, yml  ..., yg-l))T. Hence, V, 5 V is equivalent to 1x1 5 lyml + ( Z ) l l 2 .  X ~ r n z n  SO 
if we want 1x1 5 M,, where M, is a constant, then we can choose 

Since Ve 2 0, a way to guarantee Ve 5 V is to design the us such that < 0 when 
V,  2 V .  From (25.2) and (23.25) we have 

1 
Ve = -5eT&e + eTpb[(.f - f )  + (6 - g ) u ~  - gas] 

1 
5 - z e T ~ e + e T ~ b l [ l f l + I f / + ~ u ~ l + / g ~ ~ I ] - e T ~ b g u s  (25.5) 

In order to design the us such that the right-hand side of (25.5) is negative, we need 
to know the bounds of f and g; that is, we have to make the following assumption. 

Assumption 25.1. We can determine functions f U(x), gU (x) and gL (x) such 
that I f  (x) 1 5 f (x) and 0 < gL (x) 5 g(x) 5 gU(x) for all x E Rn. 

Based on fU ,gU and g~ and by observing (25.5), we choose the supervisory 
controller us as follows: 

where I* = 1 if Ve 2 v, I* = 0 if Ve < V, and sgn(y) = 1(-1) if y 2 0 (< 0). 
Substituting (25.6) into (25.5) we have that if Ve 2 V, then 
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where we assume e # 0 since this is natural under Ve 2 V .  Consequently, using 
the control (25.1) with us given by (25.6), we can guarantee that Ve 5 V, which, 
when ?' is chosen according to (25.4), guarantees 1x1 5 Mx for any given constant 
Mx . 

Because of the indicator function I*, us is nonzero only when Ve > V, therefore 
us is a supervisory controller. That is, if the closed-loop system with the fuzzy 
controller ur of (23.7) is well-behaved in the sense that the error is within the 
constraint set (that is, Ve 5 V or equivalently 1x1 5 M,), then the supervisory 
controller us is idle. On the other hand, if the system tends to be unstable (that is, 
Ve 2 V), then the supervisory controller u, takes action to force Ve 5 V. 

25.1.2 For Direct Adaptive Fuzzy Control System 

Consider the basic direct adaptive fuzzy control system in Fig.24.1, where the pro- 
cess is modeled by (24.1)-(24.2), the controller is the fuzzy system (24.7), and the 
adaptation law is given by (24.16). Our task now is to design a supervisory con- 
troller us on top of the fuzzy controller u ~ ,  such that the state x is guaranteed to 
be bounded. 

Let the control be 
u = u ~ ( x l 6 )  + u,(x) (25.8) 

and define the ideal control u* as in (23.5) (with g(x) = b). Substituting (25.8) into 
(24.1) and after rearrangement, we obtain the closed-loop error equation 

where A and b are the same as in (24.9). Defining the Lyapunov function candidate 
Ve as in (25.3) and using (25.9) and (23.25), we have 

In order to design us such that ve < 0, we have to make the following assumption, 
which is essentially the same as Assumption 25.1. 

Assumption 25.2. We can determine a function f U(x) and a constant bL such 
that I f  (x) 1 5 f (x) and 0 < b~ 5 b. 

By observing (25.10) and (23.5), we design the supervisory controller us as 
follows: 

where the indictor function I* is the same as that in (25.6); that is, I* = 1 if 
V, > V, I* = 0 if V, < v ,  where v is determined according to the bound of x as 
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in (25.4). Substituting (25.11) and (23.5) into (25.10) and considering the I* = 1 
case, we have 

Therefore, using the supervisory controller us, we can guarantee that V, < V ,  from 
which we have 1x1 5 Mz if we choose V according to (25.4). 

The design of supervisory controller for the combined indirectldirect adaptive 
fuzzy control system is left as an exercise. 

25.2 Parameter Boundedness By Projection 

25.2.1 For Indirect Adaptive Fuzzy Control System 

Using the basic adaptation law (23.27)-(23.28), we cannot guarantee that the pa- 
rameters O f  and Og are bounded. If O f  diverges to infinity, then the fuzzy system 
f ( x 1 0 ~ )  will steadily increase and result in an unbounded control u l ;  this is clearly 
unacceptable. Therefore, to develop a stable system (in the sense that all variables 
are bounded), we must modify the adaptation law such that the parameters are 
bounded. 

Let the constrain sets Rf  and Rg for O f  and 8, be defined as 

where p, and q, are as defined in Subsection 23.2.2, and M f  , E and Mg are constants. 
We require l0,l to  be bounded from below by 6 > 0 because from (23.7) we see that 
g = O T r l  must be nonzero. We now modify the basic adaptation law (23.27)-(23.28) 
to guarantee O f  E R and Og E Rg . 

The basic idea is the following: if the parameter vector is in the interior of the 
constraint set or on the boundary but moving toward the inside of the constraint 
set, then use the basic adaptation law (23.27)-(23.28); if the parameter vector is on 
the boundary of the constraint set but moving toward the outside of the constraint 
set, then project the gradient of the parameter vector onto the supporting hyper- 
plane; see Fig.25.1. Specifically, the modified adaptation law with projection for 
the indirect adaptive fuzzy system is given as follows: 
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A supporting hyperplane 

Figure 25.1. Illustration of the projection algorithm. 

Adaptation Law with Projection: 

For O f ,  use 

-%eTpb[(x) if ( ( O f ( < M f ) ~ ~ ( ( O f ( = M f a n d  
0, = eTpb0?[(x) 2 0) 

~ { - - y ~ e ~ ~ b [ ( x ) )  if (let/ = Mf and eTpb0:[(x) < 0) 
(25.15) 

where the projection operator P{*) is defined as 

For 09, use 

Whenever an element Ogi of 0, equals E ,  use 

where qi(x) is the ith component of ~ ( x ) .  
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Otherwise, use 

- y 2 e T P b r l ( x ) u ~  i f  ( l O g l  < M g )  or ( l O g l  = M g  and 
eg = e T ~ b O T r l ( x ) u r  2 0 )  

~ { - y ~ e ~ ~ b ~ ( x ) u ~ )  i f  ( l O g l  = M g  and e T ~ b O T v ( x ) u I  < 0 )  
(25.18) 

where the projection operator P { * )  is defined as 

The following theorem shows that the modified adaptation law (25.15)-(25.19) 
guarantees that O f  E R f  and 8, E 0,. 

T h e o r e m  25.1. Let the constraint sets R f  and Rg be defined in (25.13) and 
(25.14). If the initial values of the parameters satisfy O f  ( 0 )  E O f  and 8, ( 0 )  E Rg , 
then the adaptation law (25.15)-(25.19) guarantees that O f  ( t )  E R f  and 8, ( t )  E Rg 
for all t 2 0. 

P r o o f :  To prove lof 1 5 Mi ,  let Vf = ; O f T O f .  If the condition in the first 
line of (25.15) is true, we have either lof 1 < M f  or vf = -" ieT~bBfT((x)  5 0 
when lof 1 = M f ;  hence, we have [ O f  1 5 M f  in this case. If the condition in the 
second line of (25.15) is true, we have / O f  1 = M f  and vf = -y1eTPbOfTt(x) + 

eTef T y l e T P b h O f  <(x)  = 0 ;  hence, lof 1 5 M f  in this case. Since the initial 10f(0)l 5 
M f ,  we have lof (t)l 5 M f  for all t 2 0. 

Using the same method, we can prove that 10g(t)l 5 M g  for all t 2 0. To show 
J O g J  > E, we see from (25.17) that if Ogi = 6 ,  then egi > 0 ;  hence, we always have 
Ogi > E which guarantees lO,l > E. 

25.2.2 For Direct Adaptive Fuzzy Control System 

The idea is the same. Let the constraint set for the O in the direct adaptive fuzzy 
controller (24.7) be 

RD = (6' E R Ily=,mi I 101 5 M ~ )  (25.20) 

The modified adaptation law with projection is 

yeTpnE(x) i f  (101 < M D )  or (101 = M D  and eTpnOTS(x) 2 0 )  
P{yeTpnE(x ) )  if (16) = M D  and eTpaOTE(x) < 0 )  

(25.21) 
where the projection operator is defined as 

The following theorem shows the boundedness of the parameters. 
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Theorem 25.2. Let the constraint set RD be defined in (25.20).  If the initial 
parameter O(0) E C I D ,  then the adaptation law (25.21) guarantees that O ( t )  E OD 
for all t 2 0 .  

The proof of this theorem is the same as the proof of Theorem 25.1 and is left 
as an exercise. 

25.3 Stable Direct Adaptive Fuzzy Control System 

25.3.1 Stability and Convergence Analysis 

Adding the supervisory controller (25.11) to the basic adaptive fuzzy control system 
in Fig. 24.1 and using the modified adaptation law (25.21), we obtain the advanced 
direct adaptive fuzzy control system that is shown in Fig.25.2. The following theo- 
rem shows the properties of this adaptive fuzzy control system. 

u=uD+Us 
Plant 

x(~)=~(x)+  bu, y=x 

specified from 
control knowledg 

Figure 25.2. Advanced direct adaptive fuzzy control sys- 
tem with supervisory controller and modified adaptation 
law. 

Theorem 25.3. Consider the adaptive fuzzy control system in Fig.25.2; that 
is, the plant under control is in the form of (24.1)-(24.2) ,  the controller u = 
u ~ ( x 1 0 )  + u s ( x )  with the fuzzy system u o ( x J 0 )  designed as in (24.6) or (24.7)  
and the supervisory controller us  (x) designed as in (25.11),  and the adaptation law 
is given by (25.21)-(25.22). This adaptive fuzzy control system is guaranteed to 
have the following properties: 
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(a) All the parameters and states are bounded, that is, 

where MD and MZ are constants, and the that determined the I* in us is chosen 
according to (25.4). 

(b) The tracking error e is bounded by the minimum approximation error w 
(defined in (24.11)) according to 

where a and b are constants. 

(c) If w is squared integrable, that is, if Jr Iw(t)12dt < co, then limt-toole(t)l = 
0. 

Proof: (a) (25.23) follows from Theorem 25.2, and (25.24) is obtained from 
(25.12) (which shows V, 5 V) and (25.4) (which shows that V, < V is equivalent 
to Ix(t)l I Mx). 

(b) With the supervisory controller us(x(0) added, the error equation (24.12) 
becomes 

6 = h e  + b(0* - O ) ~ C ( X )  - bw - bu,(x) (25.26) 

Considering the Lyapunov function candidate V of (24.13) and using (25.26), we 
have 

Substituting the adaptation law (25.21) into (25.27) and letting I; = 1 indicate 
that the condition in the second line of (25.21) is true and Ig* = 0 indicate the other 
cases, we have 

We now show that the second term in the right-hand side of (25.28) is nonpositive. 
If I,* = 0, the conclusion is trivial. Let Ig* = 1, which means that 101 = MD 
and eTpnBT[(x) < 0, we have (0* - = !j(10*I2 - l0I2 - 16 - Q*l2) < 0 since 
101 = MD 2 l0*l Therefore, (25.28) is simplified to 
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Since the supervisory controller u,(x) of (25.11) has the same sign as eTpb ,  we 
obtain from (25.29) that 

where XQrnin is the minimum eigenvalue of Q and we assume XQrnin > 1. Integrat- 
ing both sides of (25.30), we obtain 

2 IpnbI2, (25.31) becomes Define a = =(lV(O)l +supttolV(t)1) and b = -- X Q ~ ~ ~ - 1  

(25.25). 

(c) If w E L2, then from (25.25) we have e E L2. Because all the variables in the 
right-hand side of (25.26) are bounded, we have e E L,. Using Barbalat's Lemma 
(Sastry and Bodson [1989]: if e E L2 n L, and e E L,, then limt,,le(t)l = O), 
we have limt+, le(t) 1 = 0. 

25.3.2 Simulations 

Example  25.1. Consider the same situation as in Example 24.1, except that 
the supervisory controller u, of (25.11) and the modified adaptation law (25.21) is 
used. We still use the six fuzzy sets as shown in Fig. 24.2 and choose the initial 
di(O)'s randomly in [-2,2]. The difference is that we require 1x1 5 Mz = 1.5 and 
10) 5 MD = 10. With initial x(0) = 1, the simulation result is shown in Fig. 25.3. 
From Fig. 25.3 we see that the supervisory controller indeed forced the state to be 
within the constraint set. 

Example  25.2. The same as Example 24.2 except that the supervisory con- 
troller is added and the adaptation law is modified. Consider the same condition as 
in Fig. 24.6, except that we require 1x1 2 Mz = 3. Fig. 25.4 shows the simulation 
result for this case. We see again that the supervisory controller did its job. 
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Figure 25.3. Closed-loop system state x(t) = e ( t )  for 
Example 25.1. 

Figure 25.4. Closed-loop system trajectory in the xi- xz 
phase plane for Example 25.2. 
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25.4 Summary and Further Readings 

In this chapter we have demonstrated the following: 

How to design the supervisory controller to guarantee the boundedness of the 
states. 

How to modifiy the basic adaptation laws through projection such that the 
parameters are guaranteed to be bounded. 

The stable direct adaptive fuzzy control scheme and its properties. 

Projection algorithms were studied in Luenberger [I9691 and Luenberger [1984]. 
There are other methods to guarantee the boundedness of the parameters, such 
as dead-zone (Narendra and Annaswamy [I9891 and Sastry and Bodson [1989]), 
6-modification (Ioannou and Kokotovic [1983]), and 6-modification (Narendra and 
Annaswamy [1989]). The stable direct adaptive fuzzy controller in this chapter was 
taken from Wang [1993]. 

25.5 Exercises 

Exercise 25.1. Design a supervisory controller for the combined indirectldirect 
adaptive fuzzy control system developed in Section 24.2, such that the states of the 
closed-loop system are bounded. Prove that your supervisory controller achieves 
the objective. 

Exercise 25.2. Modify the adaptation law by introducing projection for the 
combined indirectldirect adaptive fuzzy control system in Section 24.2, such that 
the parameters are bounded. Prove that your adaptation law achieves the objective. 

Exercise 25.3. Show that (25.16) is indeed a projection operator; that is, prove 
that: 

(a) ~ { - - y l e ~ P b t ( x ) }  is orthogonal to P{-yleT~b~(x))-(-y~eT~b~(x)), and 

(b) ~ { - - y I e ~ P b t ( x ) )  lies on the supporting hyperplane of Of at  the point B f .  

Exercise 25.4. Prove Theorem 25.2. 

Exercise 25.5. Repeat the simulation in Example 25.1 with x(0) = 1.4. 

Exercise 25.6. Repeat the simulation in Example 25.2 with Mz = 4. 



Chapter 26 

Advanced Adaptive Fuzzy 
Controllers I I 

26.1 Stable Indirect Adaptive Fuzzy Control System 

26.1.1 Stability and Convergence Analysis 

Continuing with Chapter 25, we add the supervisory controller u,(x) of (25.6) to the 
basic indirect adaptive fuzzy controller of (23.7) and change the adaptation law 
to (25.15)-(25.19). This advanced indirect adaptive fuzzy control system is shown 
in Fig. 26.1. The following Theorem shows the stability and convergence properties 
of this system. 

Theorem 26.1. Consider the indirect adaptive fuzzy control system in Fig. 
26.1; that is, the plant is (23.1)-(23.2), the control u = ur + us where ul is given 
by (23.7) and us is given by (25.6), and the adaptation law is (25.15)-(25.19). This 
adaptive fuzzy control system is guaranteed to have the following properties: 

(a) All the parameters and states are within the constraint sets, that is, 

where Rf and 0, are defined in (25.13) and (25.14), respectively, and the in the 
I* of us is chosen according to (25.4). 

(b) The tracking error e satisfies (25.25), where w is defined in (23.21) and a,  b 
are constants. 

(c) If w is squared integrable, then Eimt+,(e(t)( = 0. 

The proof of this Theorem follows the same arguments as in the proof of Theorem 
25.3, and is left as an exercise. 
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Fuzzy controller 
4 

UI of (23.7) 

u=ul+us 
+ 

Figure 26.1. Advanced indirect adaptive fuzzy control 
system with supervisory controller and modified adaptation 

Plant 

Jn)=f(x)+ g(x)u, y=q 

law. 

26.1.2 Nonlinear Parameterization 

In the fuzzy controller of the indirect adaptive fuzzy control systems in Figs. 23.2 
and 26.1, the fuzzy systems f(xl0 f )  and ij(x10,) are linearly parameterized, as 
shown in (23.12) and (23.13). To achieve this linear parameterization, the IF- 
part membership functions must be fixed and the adaptation laws only adjust the 
centers Of and 0, of the THEN-part fuzzy sets. In order for the fuzzy systems 
f"(x1ef) and j(xl0,) to be well-behaved at  any x in the domain of interest, the IF- 
part membership functions have to cover the whole domain. Therefore, the numbers 
of rules in the fuzzy systems f ( x 1 0 ~ )  and j(xl0,) increase exponentially with the 
dimension of x. One way to reduce the number of rules is to allow the IF-part 
membership functions also to change during the adaptation procedure, so that the 
same rule can be used to cover different regions of the state space at different times. 

Specifically, we choose f(xlef) and ij(xl0,) to be the fuzzy systems in the form 
of (9.6) (fuzzy systems with product inference engine, singleton fuzzifier, center- 
average defuzzifier, and Gaussian membership functions), that is, 
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where Of and 8, are the collections of the parameters ($, 51fi, oii) and (gk, 5ii, aii),  
respectively. Let the optimal parameters 8; and 8; be defined as in (23.19) and 
(23.20). In order to use the same approach as in Subsection 23.2.3 to design the 
adaptation law, we take the Taylor series expansions of f(xl8 j)  and i(xl8;) around 
Of and 8, and obtain 

where O(lOf - 8; 1 2 )  and O(l8, - 8; 12) are higher-order terms. 

Substituting (26.5)-(26.6) into (23.22), we obtain the error equation 

where 
= + o ( p f  - e;12) + o(18 ,  - 8g12) (26.8) 

and w is defined in (23.21). Comparing (26.7) with (23.23) we see that we can use 
the same approach in Subsection 23.2.3 to design the adaptation law-just replacing 

F(x) by Bf , q(x) by Bgk;rg) , and w by u; that is, the adaptaion law in this 
case is 

The (advanced) adaptation law with projection can be developed in the same way 
as in the linear parameterization cases. 

To implement the adaptation law (26.9)-(26.10), we must know how to compute 

Bf(X'efl  and @&Yg).  Fmm Chapter 13 we know that these two derivatives can be 
00, 

af(x'ef) is computed computed using the back-propagation algorithm. Specifically, 
from 
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where 

ag(x'eg) can be computed using the same algorithm (26.11)-(26.15) with f replaced 
a09 

by g.  

26.2 Adaptive Fuzzy Control of General Nonlinear Systems 

The adaptive fuzzy controllers developed up to this point were designed for nonlinear 
systems in the canonical form (23.1)-(23.2). In practice, however, many nonlinear 
systems may not be represented in the canonical form. In general, a single-input- 
single-output continuous-time nonlinear system is described by 

where x E Rn is the state vector, u E R and y E R are the input and output of 
the system, respectively, and F and h are nonlinear functions. In this section, we 
consider the general nonlinear system (26.16); our objective is to make the output 
y ( t )  track a desired trajectory y,(t). 

Comparing (26.16) with the canonical form (23.1)-(23.2), we see that a difficulty 
with this general model is that the output y is only indirectly related to  the input 
u, through the state variable x and the nonlinear state equation; on the other hand, 
with the canonical form the output (which equals the first state variable) is directly 
related to the input. Therefore, inspired by the results of Chapters 23-25, we might 
guess that the difficulty of the tracking control for the general nonlinear system 
(26.16) can be reduced if we can find a direct relation between the system output 
y and the control input u. Indeed, this idea constitutes the intuitive basis for the 
so-called input-output linearization approach to  nonlinear controller design (Isidori 
[1989]). 

Input-output linearization is an approach to nonlinear controller design that has 
attracted a great deal of interest in the nonlinear control community in recent years. 
This approach differs entirely from conventional linearization (for example, Jacobian 
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linearization) in that linearization is achieved by exact state transformations and 
feedback rather than by linear approximations of the nonlinear dynamics. We now 
briefly describe the basic concepts of linearization (Subsection 26.2.1), show how to 
design adaptive fuzzy controllers for the general nonlinear system (26.16) based on 
the input-output linearization concept (Subsection 26.2.2), and apply these adaptive 
fuzzy controllers to the ball-and-beam system (Subsection 26.2.3). 

26.2.1 Intuitive Concepts of Input-Output Linearization 

The basic idea of input-output linearization can be summarized as follows: differ- 
entiate the output y repeatly until the input  u appears, then  specify u i n  such a 
way that the nonlinearity is canceled, and finally design a controller based o n  linear 
control. We now illustrate this basic idea through an example. 

Consider the third-order system 

To generate a direct relation between y and u, we differentiate y 

Since y is still not directly related to u, we differentiate it again 

Clearly, (26.22) represents a direct relationship between y and u. If we choose 

where fl E (cosx2 + 23) (2: + 23) + (x2 + I)$!, then we have 

If we view v as a new input, then the orignal nonlinear system (26.17)-(26.20) is 
linearized to the linear system (26.24). This linearization procedure is shown in Fig. 
26.2. Now if we choose the new control input 

where e y, - y ,  then the closed-loop system is characterized by 

e +  k l & +  k2e = 0 (26.26) 
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Nonlinear system 
(26.17)-(26.20) 5 

fl 
I 

x2+ 1 

Linearized system 

Figure 26.2. Diagram of the linearized system for the 
nonlinear system (26.17)-(26.20). 

If we choose kl and k2 such that all roots of s2 + kls+k2 = 0 are in the open left-half 
complex plane, then we have limt,,e(t) = 0, which is our control objective. 

If we need to differentiate the output of a system r times to generate a direct 
relationship between the output y and the input u, this system is said to have 
relative degree r.  Thus, the system (26.17)-(26.20) has relative degree 2. It can be 
shown formally that for any controllable system of order n, it will take at most n 
differentiations of any output for the control input to appear; that is, the relative 
degree of any n'th-order controllable system is less than or equal to n. 

At this point one might feel that the tracking control problem for the nonlin- 
ear system (26.17)-(26.20) has been solved with control law (26.23) and (26.25). 
However, one must realize that (26.26) only accounts for part of the whole sys- 
tem because it has only order 2, while the whole system has order 3. Therefore, a 
part of the system dynamics has been rendered "unobservable" in the input-output 
linearization. This part of the system is called the internal dynamics, because it can- 
not be seen from the external input-output relationship (26.24). For the preceding 
example, the internal dynamics are represented by 

which is obtained by substituting (26.23) and (26.25) into (26.19). If these internal 
dynamics are stable in the sense that the state x3 is bounded, our tracking control 
problem has indeed been solved. Otherwise, we have to redesign the control law. 
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26.2.2 Design of Adaptive Fuzzy Controllers Based on Input-Output Lineariza- 
tion 

From the last subsection we see that the input-output linearization approach re- 
quires that the mathematical model of the system is known, because otherwise 
the differentiation procedure cannot be performed. In our problem, however, the 
nonlinear functions F and h in (26.16) are assumed to be unknown. How can we 
generalize the approach of input-output linearization to our problem? 

First, inspired by the certainty equivalent controller in Chapter 23, one may 
think to replace the F and h by fuzzy systems and then develop an adaptation law 
to adjust the parameters of the fuzzy systems to make them approximate F and h. 
Indeed, this is a valid idea. However, this approach will result in a very complicated 
adaptive control system. The reason is that, although the original fuzzy systems 
for approximating F and h are linear in their parameters, the differentiations cause 
these parameters to appear in a nonlinear fashion in later stages of the differentiation 
procedure. Therefore, we do not take this approach. 

Our approach is based on the following consideration: from the last subsection 
we see that the control design (26.23) is based only on the final system (26.22) in 
the differentiation procedure, the intermediate system (26.21) is not directly used; 
therefore, instead of approximating the F and h by fuzzy systems, we approximate 
the nonlinear functions in the final equation of the differentiation procedure by 
fuzzy systems. We then can develop an adaptation law to adjust the parameters of 
the fuzzy systems to make y track y,. To give the details in a formal way, we need 
the following assumption. 

Assumption 26.1. We assume that: (i) the nonlinear system (26.16) has 
relative degree r ,  (ii) the control u appears linearly with respect to y(T),  that is, 

y"' = f (x) + g(x)u 

where f and g are unknown functions and g(x) # 0, and (iii) the internal dynamics 
of the system with the following adaptive fuzzy controller are stable. 

Design of Adaptive Fuzzy Controller Based on Input-Output Lin- 
earization: 

Step 1. Determine the relative degree r of the nonlinear system (26.16) based 
on physical intuitions. Specifically, we analyze the physical meanings of y, y, y, 
..., and determine the y(T) that is directly related to u. We will show how to 
do this for the ball-and-beam system in the next subsection. 

Step 2. Choose the fuzzy systems f ( x 1 0 ~ )  and g(xlOg) in the form of (9.6), 
that is, 

f(x10f)  = $t(x) (26.29) 

i(xl0g) = 0Fl(x) (26.30) 



Sec. 26.2. A d a ~ t i v e  Fuzzv Control of General Nonlinear Systems 335 

Step  3. Design the controller as 

where k = (k,, ..., kl)T is such that all roots of s r  +klsr-l +. . .+k, = 0 are in 
the open left-half complex plane, and e = (e, 8, ..., e('-l))T with e = y, - y. 

Step 4. Use the adaptation law 

to adjust the parameters, where P and b are defined as in Chapter 23. The 
overall control system is the same as in Fig.23.2 except that the plant is 
changed to (26.16) and n is changed to r.  

The controller (26.31) and adaptation law (26.32)-(26.33) are obtained by using 
the same Lyapunov synthesis approach as in Chapter 23. This can be done because 
Assumption 26.1 ensures that controlling (26.16) is equivalent to controlling (26.28). 

Using the same ideas as in Chapter 25, we can add a supervisory controller to the 
fuzzy controller (26.31) to guarantee the boundedness of y = (y, y, ..., y(r-l))T. We 
also can use the projection algorithm to modify the adaptation law (26.32)-(26.33) 
to guarantee the boundedness of Of and 8,. If linguistic information for f and g is 
available, we can incorporate it into the initial Of(0) and Og(0) in the same way as 
in Chapter 23. 

The preceding adaptive fuzzy controller is an indirect adaptive fuzzy controller. 
We also can develop a direct adaptive fuzzy controller using the same idea as in 
Chapter 24. The resulting controller is 

with adaptation law 
e = yeTpr<(x) 

where p, is defined as in Chapter 24. Similarly, we can also develop a combined 
indirect/direct adaptive fuzzy controller for the general nonlinear system. 

26.2.3 Application to  the Ball-and-Beam System 

The ball-and-beam system is illustrated in Fig. 16.7 and is characterized by (16.4) 
and (16.5). In this subsection, we use the adaptive fuzzy controllers developed 
in the last subsection to control the ball position y = XI to  track the trajectory 
y,(t) = sin(t). 
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We begin with Step 1, that is, determining the relative degree r of the ball- 
and-beam system based on physical intuitions. First, we realize that the control u 
equals the acceleration of the beam angle 0; thus, our goal is to determine which 
derivative of y is directly related to the acceleration of 0. Clearly, the ball position 
y = XI = r and the ball speed along the beam y are not directly related to v. Based 
on Newton's Law, the acceleration of the ball position, y, is propositional to sin(0), 
which is not directly related to u = 0.  Therefore, 5 is not directly related to u. 
Because y is propositional to sin(@), g ( 3 )  is directly related to e,  but not directly 
related to u = 0. Finally, we see that y(4) is directly related to u. Therefore, the 
relative degree of the ball-and-beam system equals 4. 

In Step 2, we define three fuzzy sets ,uN(x~) = l / ( l  + exp(5(xi + I))),  ,UZ(xi) = 
exp(-x:) and   xi) = 1/(1 + exp(-5(xi - 1))) for all zl to 24. Therefore, the 
dimension of Of, 0, and [(x) equals 34 = 81. Because there is no linguistic informa- 
tion about f and g, the initial Bf(0), and 0,(0) were chosen randomly in the interval 
[-2, 21. 

In Step 3, we choose k = (1,4,6, 4)T, and in Step 4 we choose yl = 2 and 
7 2  = 0.2. Figs. 26.3 and 26.4 show the y(t) (solid line) using this adaptive fuzzy 
controller along with the desired trajectory ym(t) (dashed line) for initial conditions 
x(0) = (1,0,0, o ) ~  and x(0) = (-1,0,O, o ) ~ ,  respectively. 

We also simulated the direct adaptive fuzzy controller (26.34) and (26.35). We 
chose the [(x) to be the same as in the preceding indirect adaptive fuzzy controller. 
We chose y = 10. Figs. 26.5 and 26.6 show the y(t) (solid line) using this direct 
adaptive fuzzy controller along with the desired trajectory ym(t) for initial condi- 
tions x(0) -= (1,0,O, o ) ~  and x(0) = (-0.4,0,0, o ) ~ ,  respectively. Comparing Figs. 
26.3-26.4 with Figs. 26.5-26.6 we see that the direct adaptive fuzzy controller gave 
better performance than the indirect adaptive fuzzy controller for this example. 

l ~ e  did not give a mathematically rigorous definition of relative degree in Subsection 26.2.1; 
therefore, the relative degree determined in this fashion can only be viewed as an intuitive relative 
degree. For the rigorous definition of relative degree, see Isidori [I9891 and Slotine and Li [1991]. 



Sec. 26.2. Adaptive Fuzzy Control of  General Nonlinear Systems 337 

Figure 26.3. The output y(t) (solid line) using the indi- 
rect adaptive fuzzy controller (26.31)-(26.33) and the de- 
sired trajectory y,(t) (dashed line) for the ball-and-beam 
system with the initial condition x(0) = (1,0,O, o ) ~ .  

Figure 26.4. The output y(t) (solid line) using the indi- 
rect adaptive fuzzy controller (26.31)-(26.33) and the de- 
sired trajectory ym(t) (dashed line) for the ball-and-beam 
system with the initial condition x(0) = (-1,0,0, o ) ~ .  
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Figure 26.5. The output y(t) (solid line) using the direct 
adaptive fuzzy controller (26.34)-(26.35) and the desired 
trajectory y,(t) (dashed line) for the ball-and-beam sys- 
tem with the initial condition x(0) = (1,0,O, o ) ~ .  

Figure 26.6. The output y(t) (solid line) using the direct 
adaptive fuzzy controller (26.34)-(26.35) and the desired 
trajectory yn(t) (dashed line) for the ball-and-beam sys- 
tem with the initial condition x(0) = (-0.4,0, O , O ) ~ .  



Sec. 26.3. Summary and Further Readings 339 

26.3 Summary and Further Readings 

In this chapter we have demonstrated the following: 

How to design adaptation laws if the IF-part membership functions of the 
fuzzy systems also are allowed to change during the adaptation procedure. 

The basic idea of input-output linearization. 

How to design adaptive fuzzy controllers for the general nonlinear systems, 
based on the input-output linearization concept. 

Nonlinear control theory should be the principal tool in the further development 
of fuzzy control. There are many good books on nonlinear control, for example, 
Isidori [I9891 provided a rigorous treatment for nonlinear control and Slotine and 
Li [I9911 is more readable. The materials in this chapter are taken from Wang 
[1994a]. 

26.4 Exercises 

Exercise 26.1. Prove Theorem 26.1. 

Exercise 26.2. Suppose that the direct adaptive fuzzy controller uD(x16') in 
(24.9) is a fuzzy system in the form of (9.6) with a8 = 1. Design an adaptation law 
for the parameters 6' using the Lyapunov synthesis approach. 

Exercise 26.3. Consider the nonlinear system 

Design a state feedback controller such that the equilibrium x = 0 of the closed-loop 
system is locally asympototically stable. 

Exercise 26.4. For the system 

design an adaptive controller to track an arbitrary desired trajectory xdl (t). Assume 
that the state ($1, is measured, that xdl(t), xdl (t), xdl (t) are all known, and 
that a1 , a2 are unknown constants. 

Exercise 26.5. Design a direct adaptive fuzzy controller for the general non- 
linear system (26.16) and simulate it for the ball-and-beam system. 
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Part VI 

Miscellaneous Topics 

We pointed out in the Preface that in writing this book we first established 
the structure that a reasonable theory of fuzzy systems and fuzzy control should 
follow, and then filled in the details. This structure is constituted by Chapters 
1-26. Because fuzzy systems and fuzzy control is a large and diversified field, some 
important topics were unavoidably not included in this structure. In this final part 
of the book (Chapters 27-31), we will study a number of important topics in fuzzy 
systems and fuzzy control that were not covered in Chapters 1-26. These topics are 
equally important as those in Chapters 1-26. 

In Chapter 27, we will study perhaps the most important method in fuzzy 
approaches to pattern recognition-the fuzzy c-means algorithm. We will show 
the details of the algorithm and study its convergence properties. In Chapter 28, 
we will study fuzzy relation equations that are potentially very useful in fuzzy 
systems and fuzzy control. We will show how to obtain exact and approximate 
solutions to different fuzzy relation equations. In Chapter 29, we will introduce 
the basic arithmetic operations for fuzzy numbers, including fuzzy addition, fuzzy 
subtraction, fuzzy multiplication and fuzzy division. These fuzzy operations are very 
useful in fuzzy decision making. In Chapter 30, we will study the most important 
topic in fuzzy decision making-fuzzy linear programming. We will justify why 
fuzzy linear programming is needed and show how to  solve a number of fuzzy linear 
programming problems. Finally, in Chapter 31, we will briefly review the basics 
in possibility theory and conclude the book with a discussion on fuzziness versus 
probability. 



Chapter 27 

The Fuzzy C-Means Algorithm 

27.1 Why Fuzzy Models for Pattern Recognition? 

Pattern recognition is a field concerned with machine recognition of meaningful reg- 
ularities in noisy or complex environments. In simpler words, pattern recognition 
is the search for structures in data. For example, Fig. 27.1 shows four cases of 
data structures in the plane. Observing Fig.27.1, we see that the data in each of 
the four cases should be classified into two groups, but the definition of a "group" 
is different. Specifically, the group in Fig. 27.l(a) should be classified according to 
the distance between data points (that is, data points with short distances among 
themselves should be grouped together), the group in Fig. 27.l(b) should be rec- 
ognized according to the connectivity of the data points (that is, data points well 
connected together should be classified into the same group), and the groups in Fig. 
27.l(c)-(d) should be defined from a mixture of distance-based and linkage-based 
criteria. In pattern recognition, a group of data is called a cluster. 

In practice, the data are usually not well distributed, therefore the "regularities" 
or "structures" may not be precisely defined. That is, pattern recognition is, by 
its very nature, an inexact science. To deal with the ambiguity, it is helpful to 
introduce some "fuzziness" into the formulation of the problem. For example, the 
boundary between clusters could be fuzzy rather than crisp; that is, a data point 
could belong to two or more clusters with different degrees of membership. In 
this way, the formulation is closer to the real-world problem and therefore better 
performance may be expected. This is the first reason for using fuzzy models 
for pattern recognition: the problem by its very nature requires fuzzy modeling 
(in fact, fuzzy modeling means more flexible modeling-by extending the zero-one 
membership to the membership in the interval [0,1], more flexibility is introduced). 

The second reason for using fuzzy models is that the formulated problem may 
be easier to solve computationally. This is due to the fact that a nonfuzzy model 
often results in an exhaustive search in a huge space (because some key variables 
can only take two values 0 and l ) ,  whereas in a fuzzy model all the variables are 
continuous, so that derivatives can be computed to find the right direction for the 
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Figure 27.1. Possible data structures. 

search. This will become clear in Section 27.3 when we introduce the fuzzy c-means 
algorithm. 

A key problem in pattern recognition is to find clusters from a set of data points. 
In the literature, a number of fuzzy clustering algorithms were proposed. In this 
chapter, we study the most famous fuzzy clustering algorithm: the fuzzy c-means 
algorithm proposed by Bezdek [1981]. Interesting readers are referred to Bezdek 
and Pal [I9921 for other methods. Pattern recognition using fuzzy models is a rich 
and currently very active research field; this chapter serves only as a short primer. 

27.2 Hard and Fuzzy c-Partitions 

Suppose that we are given a set of data X = {XI, xz, ..., x,), where xk can be any 
element, for example, xi E R p .  Let P ( X )  be the power set of X ,  that is, the set of 
all the subsets of X .  A hard c-partition of X is the family {Ai E P ( X )  : 1 5 i 5 c) 
such that Uiz, Ai = X and Ai fl Aj = 0 for 1 < i # j 5 c. Each Ai is viewed as a 
cluster, so { A l ,  ..., A,) partitions X into c clusters. 

The hard c-partition can be reformulated through the characteristic (member- 
ship) functions of the element xk in Ai. Specifically, define 
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where xk G X,  Ai E P ( X ) ,  i = 1,2, ..., c and k = 1,2, ..., n. Clearly, uik = 1 means 
that xk belongs to cluster Ai. Given the value of uik, we can uniquely determine a 
hard c-partition of X ,  and vice versa. The uik's should satisfy the following three 
conditions: 

(27.2) and (27.3) together mean that each xk E X should belong to one and only 
one cluster. (27.4) requires that each cluster Ai must contain at  least one and at  
most n - 1 data points. Collecting uik with 1 5 i 5 c and 1 < k 5 n into a 
c x n matrix U, we obtain the matrix representation for hard c-partition, defined 
as follows. 

Definition 27.1. Hard c-Partition. Let X = {xl, ..., x,} be any set, I/,, be the 
set of real c x n matrices U = [uik], and c be an integer with 2 < c < n. Then hard 
c-partition space for X is the set 

Mc = {U E V,, ( (27.2) - (27.4) are true) (27.5) 

We now consider an example of hard c-partition. 

Example 27.1. Let X be the set of three cars: 

X = 1x1 = Ford, 2 2  = Toyota, x 3  = Chrysler) (27.6) 

If c = 2, then under the constraints (27.2)-(27.4), there are three hard c-partitions 

Constraints (27.3) and (27.4) rule out matrices like 

respectively. If our objective is to partition X into US cars and Japanese cars, then 
U3 is the most appropriate partition. However, as we discussed in Chapter 2, the 
distinction between US and Japanese cars is not crisp, because many parts of US 
cars are imported from Japan and some Japanese cars are manufactured in the US. 
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Clearly, a way to solve this problem is to allow the uik's to take any value in the 
interval [0, 11. 

Another problem with hard c-partition is that the space Mc is too large. In fact, 

is the number of distinct ways to partition X into c nonempty subsets. If, for 
example, c = 10 and n = 25, there are roughly lo1* distinct 10-partitions of the 25 
points. This problem is due to the discrete nature of the characteristic function u,k. 
Although discrete uik's result in a finite space Mc, the number of elements in Mc 
is so large that the search for the "optimal" partition becomes a forbidding task. 
If we change uik to a continuous variable that can take any value in the interval 
[O, 11, then we can compute the derivatives of some objective function with respect 
to uik Using these derivatives, we could find the best search direction so that the 
search for optimal partition would be greatly simplified. 

Due to the above two reasons (conceptual appropriateness and computational 
simplicity), we introduce the concept of fuzzy c-partition, as follows. 

Definition 27.2. Fuzzy c-Partition. Let X ,  Vcn and c be as in Definition 27.1. 
Then fuzzy c-partition space for X is the set 

M.fc = {U E &n 1 Uik E [O, 1],1 < i 5 C, 1 < k 5 7 l ;  (27.3) is true) (27.10) 

uik is the membership value of xk belonging to cluster Ai. Note that condition 
(27.4) is not included in defining Mfc; this is called the degenerate fuzzy c-partition 
in Bezdek [1981]. 

Consider Example 27.1 again. Using fuzzy c-partition, a more reasonable parti- 
tion of X might be 

27.3 Hard and Fuzzy c-Means Algorithms 

27.3.1 Objective Function Clustering and Hard c-Means Algorithm 

How to choose the "optimal" partition from the space Mc or Mf,? There are three 
types of methods: hieraxchical methods, graph-theoretic methods, and objective 
function methods. In the hierarchical methods, merging and splitting techniques 
are used to construct new clusters based on some measure of similarity; the result 
is a hierarchy of nested clusters. In the graph-theoretic methods, X is regarded 
as a node set which are connected by edges according to a measure similarity; the 
criterion for clustering is typically some measure of connectivity between groups 
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of nodes. In the objective function methods, an objective function measuring the 
"desirability" of clustering candidates is established for each c, and local minima 
of the objective function are defined as optimal clusters. The objective function 
methods allow the most precise formulation of the clustering criterion; we will adapt 
this approach in this chapter. 

The most extensively studied objective function is the overall within-group sum 
of squared errors, defined as 

where U = [ ~ i k ]  E Mc or Mfc, V = (vl ,  ..., vc) with vi being the center of cluster 
Ai defined by 

Clearly, vi is the average (for hard c-partition) or weighted average (for fuzzy c- 
partition) of all the points in cluster Ai. From now on, we assume that xk, vi E RP. 
If U is a hard c-partition, then Jw(U, V) of (27.12) can be rewritten as 

which explains why Jw(U, V) is called the overall within-group sum of squared 
errors. Since uik 1 lxk - vi1I2 is the squared error incurred by representing xk with 
vi, it is also a measure of local density. Jw (U, V) would be small if the points in 
each hard cluster Ai adhere tightly to their cluster center vi. 

Finding the optimal pair (U, V) for Jw is not an easy task. The difficulty stems 
from the size of Mc, which is finite but huge (see (27.9)). One of the most popular 
algorithms for finding the approximate minima of Jw is the following hard c-means 
algorithm (also called ISODATA algorithm). 

Hard c-Means Algorithm: 

Step 1. Suppose that we are given n data points X = {XI, ..., x,) with 
xi E RP. Fix c, 2 5 c < n,  and initialize u(') E Mc. 

Step 2. At iteration 1, 1 = 0,1,2, ..., compute the c mean vectors 

where [u$1,)] = u('), and i = 1,2, ..., c. 
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Step 3. Update u(" to u('+') = [u$+l)] using 

( 1 )  - ( 1 )  1 (Ixr - vi 1 1  - minlijsc(((xk - vj ( I )  
0 otherwise 

Step 4. Compare u(') with u('+') : if ((u('+~) - u(') 1 I < E for a small constant 
6, stop; otherwise, set 1 = I + 1 and go to Step 2. 

The hard c-means algorithm is quite reasonable from an intuitive point of view: 
guess c hard clusters (Step I), find their centers (Step 2), reallocate cluster mem- 
berships to minimize squared errors between the data and the current centers (Step 
3), and stop when looping ceases to  lower Jw significantly (Step 4). Since the hard 
space Mc is discrete, the notion of local minima is not defined for Jw. The necessity 
of computing {v! ' ) )  with (27.15) can be established by setting the gradients of Jw 
with respect to each vi equal to zero. 

Example 27.2. Suppose that X consists of the 15 points in R2 shown in Fig. 
27.2. These data points look like a butterfly, where x l  to x7 form the left wing, xg 
to x15 form the right wing, and xg is a bridge between the two wings. With c = 2 
and 

the hard c-means algorithm stops at 1 = 3 with 

u ( ~ )  shows that XI to x7 are grouped into one cluster A1 and xg to xl5 are grouped 
into the other cluster A2. Note that Al and A2 cannot be symmetric with respect 
to xg because xg must belong entirely to either Al or A2. Since the data in X 
are themselves perfectly symmetrical, the unsymmetry of the clusters is intuitively 
unappealing. A way to solve this problem is to use the fuzzy c-means algorithm, 
which we will introduce next. 

27.3.2 The Fuzzy c-Means Algorithm 

For the fuzzy c-means algorithm, the objective is to find U = [ T i i k ]  E Mfc and 
V = (vl, ..., v,) with vi E RP such that 

is minimized, where m E (1, oo) is a weighting constant. We first establish a neces- 
sary condition for this minimization problem, and then propose the fuzzy c-means 
algorithm based on the condition. 
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Figure 27.2. The butterfly. 

Theorem 27.1. Let X = { x l ,  ..., x,), xi E RP, be a given set of data. Fix 
c E  {2,3,  ..., n - 1 ) a n d m E  ( l , ~ ) ,  andassumethat IIxk--viII #Oforall1 5 k < n  
and 1 5 i 5 c. Then U = [uik] and V = (vl ,  ..., v,) is a local minimum for Jm(U, V) 
only if 

and 

Proof: To show (27.20), assume that the vi 's are fixed. Then the problem 
becomes minimizing Jm with respect to uik under the constraint (27.3). Using the 
Lagrange multiplier method, we obtain that the problem is equivalent to minimizing 

n c n c 

L(U, A) = C C ( ~ i / c ) ~ l l * k  - vi1I2 - C A.(C ~ i l  - 1) (27.22) 
k=l i=l k=l i=l 

without constraints. The necessary condition for this problem is 
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From (27.23), we have 

Substituting (27.25) into (27.24), we have 

Substituting (27.26) into (27.25), we obtain (27.20). 

To show (27.21), assume that uik's are fixed. Then this is an unconstraint 
minimization problem and the necessary condition is 

from which we get (27.21). 

The fuzzy c-means algorithm is based on the necessary condition (27.20) and 
(27.21). 

Fuzzy c-Means Algorithm: 

Step 1. For given data set X = {XI ,  ..., xn), xi E RP, fix c E {2,3, ..., n - I), 
m E (1, m), and initialize u(O) E M f c  

Step 2. At iteration 1, I = 0,1 ,2 ,  ..., compute the c mean vectors 

Step 3. Update u(~)  = [ui?] to U(l+') = [u!rl)] using 

Step 4. If IIU("l) - u ( ' ) I J  < E ,  stop; otherwise, set 1 = 1 + 1 and go to Step 
2. 

We now apply the fuzzy c-means algorithm to the butterfly example. 

Example 27.3. Let X = {x l ,  ..., xI5)  be the butterfly data in Fig. 27.2. With 
c = 2 , m  = 1 . 2 5 , ~  = 0.01, and 
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( 5 )  the fuzzy c-means algorithm terminated at 1 = 5 with the membership values ulk 
shown in Fig.27.3. We see that the data in the right and left wings are well classified, 
while the bridge x* belongs to both clusters to almost the same degree; this is 
intuitively appealing. 

Figure 27.3. Membership values of the butterfly data 
points using the fuzzy c-means algorithm. 

Next, we analyze the convergence properties of the fuzzy c-means algorithni. 

27.4 Convergence of the Fuzzy c-Means Algorithm 

Theorem 27.1 shows that (27.20) and (27.21) establish the necessary condition for 
(U, V) to be a local minimum of J,. In the fuzzy c-means algorithm, the vi and uik 
are iteratively computed according to this necessary condition. Therefore, it is not 
clear whether the algorithm will converge to a local minimum of Jm. In fact, this is 
a rather complicated issue. In this section, we prove only a fundamental property 
of the fuzzy c-means algorithm: the objective function Jm(U, V) will decrease or 
keep the same through the iterations; that is, J, (u('+'), v('+')) < J, ( ~ ( ' 1 ,  ~ ( ' 1 ) .  

To prove this property, we first show that if V in J,(U, V) is fixed, then (27.20) 
is also a sufficient condition to compute the local minimum of Jm (Lemma 27.1). 
Similarly, if U in J,(U, V) is fixed, then (27.21) is also a sufficient condition for 
minimizing Jm (Lemma 27.2). 

Lemma 27.1. Let $(U) = J,(U, V), where V E RpXC is fixed, and I Ixk - vill # 
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0 for all 1 5 k 5 n and 1 5 i < c. Then U = [uik] is a local minimum of 4(U) if 
and only if U is computed via (27.20). 

Proof: The only if part was proven in Theorem 27.1. To show the sufficiency, 
we examine H(U) - the cn x cn Hessian of the Lagrangian of 4(U) evaluated at  
the U given by (27.20). From (27.23), we have 

m(m - l ) ( ~ , t ) ~ - ~ 1 1 x t  - v,1I2 if s = i ,  t = k 
0 otherwise 

(27.31) 
where u,t is computed from (27.20). Thus, H(U) = [hst,ik(U)] is a diagonal matrix. 
Since m > 1 and ((xi - v,(( # 0 for all 1 5 t 5 n and 1 < s 5 c, we have 
m(m - 1) ( ~ , t ) ~ - ~  I (xt - V, 1 l2 > 0. Therefore, the Hessian H (U) is positive definite 
and consequently (27.20) is also a sufficient condition for minimizing $(U). 

Lemma- 27.2. Let $(V) = Jm(U,V), where U E Mf, is fixed, ((xk - v i ( (  # 0 
for 1 < k 5 n and 1 5 i < c, and m > 1. Then V = [vi] is a local minimum of 
$(V) if and only if V is computed via (27.21). 

Proof: The necessity was proven in Theorem 27.1. To show the sufficiency, we 
have from (27.27) that 

C i = l  2 ( ~ ~ ~ ) ~  if j = i 
otherwise 

Therefore, the Hessian is positive definite and consequently (27.21) is a sufficient 
condition for minimizing (V) . 

From Lemmas 27.1 and 27.2, we can prove our main result: J,(u('+'), v('+')) < - 
J ~ ( u ( ' ) ,  ~ ( ' 1 ) .  

Theorem 27.2. Let v,!" , u:?, I = 0,1,2, ..., be the sequence generated from the 

fuzzy c-means algorithm (27.28) and (27.29). If m > 1 and (lxf) - vil)I( # 0 for all 
k = 1,2, ..., n,  i = 1,2, ..., c, and 1 = 0,1,2, ..., then we have 

Proof: Since v(') is computed from (27.28) fqr fixed U, we have from Lemma 
27.2 that 

J m (u(I+l), v(I+l)) < - J ~ ( U ( ' + ~ ) ,  ~ ( ' 1 )  (27.34) 

Since u('+') is computed from (27.29) for fixed V, we have from Lemma 27.1 that 

Combining (27.34) and (27.35), we obtain (27.33). 
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Let R be the set 

R = {(U*, V") E M f c  x R p X C  I Jm(U*, V*) 5 Jm(U, V*),VU E M f C ;  
Jm(U*,V*) < J,(U*, V), V # V*) (27.36) 

Then it was proven in Bezdek, Hathaway, Sabin and Tucker [I9871 that the fuzzy 
c-means algorithm either terminates at a point in 0, or a subsequence exists that 
converges to a point in 0. For details, the readers are referred to Bezdek, Hathaway, 
Sabin, and Tucker [1987]. 

27.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

e The motivations of using fuzzy models for pattern recognition. 

The definitions of hard and fuzzy c-partitions and the steps of the hard c- 
means algorithm. 

The detailed steps of the fuzzy c-means algorithm and its theoretical justifi- 
cation. 

The convergence properties of the fuzzy c-means algorithm. 

The original book Bezdek [I9811 is still the best source to learn the fuzzy c- 
means algorithm. A number of important papers on the fuzzy c-means algorithm 
and other algorithms in fuzzy approaches to pattern recognition are collected in the 
edited book Bezdek and Pal [1992]. For classical methods for pattern recognition, 
see Duda and Hart [1973]. 

27.6 Exercises 

Exercise 27.1. Show that the number of distinct ways to partition n elements 
into c nonempty subsets is given by (27.9). 

Exercise 27.2. Let U E Adfc and 

Show that: 

(a) ( l lc )  < F(U) < 1 for any U E M f c .  

(b) F(U) = 1 if and only if U is hard. 
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(c) F ( U )  = (l /c) if and only if uu = (l/c)Vi, k. 

Exercise  27.3. Let x l ,  ..., x n  be n d-dimensional samples and C be any non- 
singular d-by-d matrix. Show that the vector x that minimizes 

is the sample mean A xi=, x k  

Exercise  27.4. Verify that (27.16) is necessary to minimize JW (U, V) of (27.12) 
for fixed V. 

Exercise 27.5. Prove that Jw(U, V) of (27.12) decreases monotonically as c 
increases. 

Exerc i se  27.6. Repeat Example 27.3 with the initial partition 

where (x)~,, is a 1 x r vector with all its elements equal to x. 

Exercise  27.7. Apply the fuzzy c-means algorithm to the butterfly data with 
c = 3, m = 1.25, c = 0.01, and 

Exercise 27.8. Develop a design method for fuzzy systems from input-output 
pairs based on the fuzzy c-means algorithm. 



Chapter 28 

Fuzzy Relation Equations 

28.1 Introduction 

Given fuzzy set A in the input space U and fuzzy relation Q in the input-output 
product space U x V, the compositional rule of inference (Chapter 6) gives a fuzzy 
set B in V as 

P B ( Y )  = SUP(PA(X) * P Q ~  2/11 (28.1) 
xEU 

Let o denote the sup-star composition, then (28.1) can be rewritten as 

If we view the fuzzy relation Q as a pure fuzzy system (see Chapter l ) ,  then (28.1) 
or (28.2) tells us how to compute the system's output B given its input A and the 
system itself Q. Sometimes, it is of interest to consider the following two problems: 

Given the system Q and its output B ,  determine the corresponding input A. 
This is similar to the deconvolution or equalization problems in signal pro- 
cessing and communications, so we call this problem the "fuzzy deconvolution 
problem." 

Given the system's input A and output B, determine the system Q. This is 
similar to the system identification problem in control, so we call this problem 
the "fuzzy identification problem." 

Therefore, solving the fuzzy relation equation (28.2) means solving the above two 
problems. The objective of this chapter is to study how to obtain the solutions to 
the two problems. 

28.2 Solving the Fuzzy Relation Equations 

In this section, we first introduce a useful operator-the cp-operator, and study its 
properties. Then, we prove a few lemmas from which we obtain solutions to the 
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fuzzy identification and fuzzy deconvolution problems. 

Definition 28.1. The cp-operator is a two-place operator cp : [O, 11 x [ O , l ]  -+ [O, 11 
defined by 

acpb = sup[c E [O,l]la*c < b] (28.3) 

where * denotes t-norm operator. 

Clearly, for &fferent t-norms * we have different cp-operators. For the * specified 
as minimum, the cp-operator becomes the so-called a-operator: 

1 i f a s b  
aab = sup[c E [O,l]lmin(a, c) 5 b] = b i f a > b  

We now show some useful properties of the cp-operator. 

Lemma 28.1. Let the cp-operator be defined by (28.3). Then the following 
inequalities are true: 

acpmax(b, c) > max(acpb, acpc) (28.5) 

a * (acpb) 5 b (28.6) 

acp(a * b )  >_ b (28.7) 

where a, b, c E [0, 11 (usually, a, b, c are membership functions). 

Proof: From (28.3) it is clear that acpb is a nondecreasing function of the second 
argument b, that is, apbl > apb2 if bl 2 b2.  Hence, acpmax(b,c) > acpb and 
acpmax(b, c) 2 acpc; this gives (28.5). (28.6) is a direct conclusion of the definition 
(28.3). Finally, from acp(a * b) = sup[c E [O,l]la * c < a * b] and the nondecreasing 
property of t-norm, we obtain (28.7). 

Now consider the "fuzzy identification problem," that is, solving the fuzzy rela- 
tion equation (28.2) for Q given A and B. We will show that a particular solution 
is Q = AcpB. To prove this result, we need the following two lemmas. 

Lemma 28.2. Let A be a fuzzy set in U and Q be a fuzzy relation in U x V. 
Then, 

& c 4 4 . 4  Q) (28.8) 

where Acp(AoQ) is a fuzzy relation in U xV with membership function pA(~)cpPAoQ(~) 

Proof: Since acpb is a nondecreasing function of b, we have 

Using (28.7) we get 
P A ~ ( A ~ Q )  (x, Y) 2 P Q ~ ,  Y) 

which gives (28.8). Cl 
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Lemma 28.3. Let A and B be fuzzy sets in U and V, respectively. Then, 

where ApB is a fuzzy relation in U x V with membership function pA(x)ppB(y). 

Proof: From (28.6) we have 

which is equivalent to (28.11). 

We are now ready to determine a solution to the "fuzzy identification problem." 

Theorem 28.1. Let Q be the set of all solutions Q of the fuzzy relation equation 
(28.2) given A and B.  If & is non-empty, then the largest element of Q (in the sense 
of set-theoretic inclusion) is given by 

Proof: Let Q be an arbitrary element of Q, then B = A o Q and from Lemma 
28.2 we have Q C ApB = Q. Since t-norms are nondecreasing functions, we have 
B = A o Q A o Q. But from Lemma 28.3 we have A o Q = A o (ApB) B,  hence 
B = A o Q, which means Q is an element of &. Since Q c Q and Q is an arbitrary 
element of Q ,  we conclude that Q is the largest element of &. 

Next, we consider the "fuzzy deconvolution problem," that is, solving the fuzzy 
relation equation (28.2) for A given B and Q. Again, we first prove two lemmas 
from which we determine a possible solution. 

Lemma 28.4. Let B be a fuzzy set in V and Q be a fuzzy relation in U x V. 
Then, 

(&@) 0 & C B (28.14) 

where the composition (QpB) o Q is a fuzzy set in V with membership function 
SUP,EU[I-LQ~B(X, Y) * PQ(X, ~ 1 1 .  

Proof: From (28.6) we get 

which gives (28.14). 
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Lemma 28.5. For fuzzy set A in U and fuzzy relation Q in U x V, the following 
is true: 

A c Qp(A Q) 

where Qcp(AoQ) is a fuzzy set in U with membership function supyEV[pQ (x, y)ppAoQ (st)]. 

Proof: Using (28.7) and the fact that apb is a nondecreasing function of b, we 
have 

>_ SUP [PA (XI] = PA (x) 
YEV 

which gives (28.16). 

We are now ready to give a compact formula of the solution to the "fuzzy 
deconvolution problem." 

Theorem 28.2. Let d be the set of all solutions A of the fuzzy relation equation 
(28.2) given B and Q. If A is non-empty, then the greatest element of A is given 
by 

A = Q ~ B  (28.18) 

where Q p B  is a fuzzy set in U with membership function supyEv[pQ(x, y)ppB(y)]. 

Proof: Let A be an arbitrary element of A, so B = A o Q and from Lemma 
28.5 we have A C Qp(Ao Q) = Q p B  = A, which implies B = Ao Q A o Q. From 
Lemma 28.4 we have A o Q = (QpB) o Q 2 B,  hence A o Q = B,  which means that 
A is an element of A. Since A is an arbitrary element in A and we have shown 
A c A, A is the largest element of A. 

A fundamental assumption in Theorems 28.1 and 28.2 is that the solutions to the 
problems exist. In many cases, however, an exact solution may not exist. Therefore, 
Q = AcpB and A = Q p B  may not be the solutions; see the following example. 

Example 28.1. Let U = { x ~ , x z ) ,  V = {yl, y2), and 

Let the cp-operator be the a-operator (28.4), then 

Q = A@ = ~ / ( x I , Y ~ )  + ~/ (x I ,Yz)  + 1/(xz,y1) + l / ( x 2 , ~ 2 )  (28.22) 

Using min for the t-norm in the sup-star composition, we have 

A 0 Q = 0.4/y1 + 0.41~2 # B (28.23) 
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Hence, Q = ApB is not a solution to the problem. Similarly, using a-operator for 
cp and min for the t-norm, we have 

and 

17 

Under what conditions do the solutions to the "fuzzy identification and decon- 
volution problems" exist? We answer this question in the next section. 

28.3 Solvability Indices of the Fuzzy Relation Equations 

Since B and A o Q are fuzzy sets in V, whether the fuzzy relation equation (28.2) 
is solvable is equivalent to whether the two fuzzy sets B and A o Q are equal. 
Therefore, we must first study how to measure the equality of two fuzzy sets. 

28.3.1 Equality Indices of Two Fuzzy Sets 

Let C and D be two fuzzy sets in U .  Then, a natural measurement of the difference 
between C and D is 

For p = 1 one has the Hamming distance, and p = 2 yields the Euclidean distance. 
The equality index of C and D is defined as 

Clearly, eqt(C, D)  = 1 if and only if C = D, therefore eqp(C, D)  is qualified as 
an equality index. Since the computation of d,(C, D) involves the complicated 
integration, it is helpful to explore other measures of equality of two fuzzy sets. 

Another approach to the comparison of fuzzy sets is to use more set-theoretically 
oriented tools. First, from the definition of the cp-operator (28.3) and the bound- 
ary condition of t-norm (see Chapter 3) we have that C D if and only if 
infZEu[pc(x)cpp~(x)] = 1. Since C = D is equivalent to C D and D C C,  
we can define the equality index of C and D as 

Clearly, eqt(C, D) = 1 if and only if C = D, therefore eqt(C, D)  is qualified as an 
equality index. Using the facts that acpb = 1 if and only if a 5 b and that the second 



Sec. 28.3. Solvability Indices o f  the Fuzzy Relation Equations 359 

infxEu in (28.28) can be moved in the front (due to the continuity of t-norm), we 
can rewrite the equality index as 

where V denotes maximum, and A denotes minimum. 

We are now ready to define the solvability indices for the fuzzy relation equation. 

28.3.2 The Solvability Indices 

Using the equality index of two fuzzy sets, it is natural to define the solvability 
index of the fuzzy relation equation (28.2) as 

However, since either A or Q is unknown, J cannot be computed. From Theorems 
28.1 and 28.2 we know that a possible solution to the "fuzzy identification (decon- 
volution) problem" is Q = ApB (a = QpB), a way to define the solvability indices 
is to replace the Q in (28.30) by Q and A by A. Specifically, we have the following 
definition. 

Definition 28.2. The solvability index of the yuzzy identification problem" is 
defined as 

EI = eqt [A 0 (A@), B] (28.31) 

and the solvability index of the (yuzxy deconvolution problem" is defined as 

Clearly, G = 1 (ED = 1) not only means that the "fuzzy identification (decon- 
volution) problem" is solvable but also implies that Q = ApB (A = QpB) is a 
solution. Since we use these special solutions in defining and to, one may won- 
der whether 51 # 1 ([D # 1) implies that the "fuzzy identification (deconvolution) 
problem" is not solvable because we may have Q' (A') other than ApB (QpB) such 
that eqt (AO Q', B)  = 1 (eqt (2 0 Q, B) = 1). Fortunately, this Q' (a') does not exist, 
because from Theorems 28.1 and 28.2 we know that if Q = ApB (A = QpB) is 
not a solution to the "fuzzy identification (deconvolution) problem," then no other 
solution exists. Therefore, 51 = 1 ( 5 ~  = 1) if and only if the "fuzzy identification 
(deconvolution) problem" is solvable. 

Our next task is to simplify JI and ( D  to make them easy to compute. First, 
we need the following lemma. 

Lemma 28.6. For a ,  b E [0, 11, it holds that 

a * (acpb) = min(a, b) 

bcp(a * (apb)) = bpa 
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Proof: If a < b, then apb = 1 and a * (acpb) = a = min(a, b). If a > b, then 
from the definition of p-operator we have a * (apb) = a * sup[c E [O, llla * c 5 b] = 
sup[a * c(a * c 5 b] = b = min(a, b); this proves (28.33). For (28.34), we have from 
(28.33) that bq(a* (apb)) = bp[min(a, b)] = bpa, which is obvious for a < b, but in 
the b < a case we have bpb = 1 = bpa. 

The following theorem shows that 51 and tD are simple functions of the heights 
of A, B and Q. 

Theorem 28.3. Let hgh(A), hgh(B) and hgh(Q) be the heights of A, B and 
Q, respectively (recall that hgh(A) = ~ u p , , ~ p ~ ( x ) ) .  Then, 

Proof: Since A o (AcpB) C B (Lemma 28.3), we have from (28.31) and (28.29) 
that 

From the monotonicity of p in the second argument, we get 

Using (28.34) we have 

Since p is a monotonic nonincreasing function of the first argument, the infyEv in 
(28.29) is achieved when ~ ~ ( y )  equals its maximum value. Hence, 

The proof of (28.36) is left as an exercise. 

We can now go back to Example 28.1 and see why an exact solution does not 
exist. For the A, B and Q in (28.19)-(28.21), we have hgh(A) = 0.4, hgh(B) = 0.5 
and hgh(Q) = 0.3, therefore cI = 0.5p0.4 # 1 and E D  = 0.5p0.3 # 1. If an exact 
solution does not exist, what we can do is to determine approximate solutions; this 
is the topic of the next section. 



Sec. 28.4. A ~ ~ r o x i m a t e  Solution-A Neural Network Amroach 361 

28.4 Approximate Solution-A Neural Network Approach 

From Theorem 28.3 and the definition of the cp-operator we see that if the height of 
B is larger than the height of A or Q, exact solutions do not exist. In these cases, 
a natural way is to determine A or Q such that 

is minimized; this gives the least-squares solution. Here we consider only the "fuzzy 
deconvolution problem;" the "fuzzy identification problem" can be solved in a simi- 
lar fashion. To make the minimization of (28.41) trackable, we do the following two 
things: (i) parameterize p ~ ( x )  as the Gaussian function (we also can use triangular 
or trapezoidal function) 

where Z and a are free parameters, and (ii) make samples xi and yj (i = 1,2, ..., N, j = 
1,2, ..., M) over the domains U and V, respectively, and approximate (28.41) by 

Therefore, the problem becomes determining the parameters Z and a, such that 
(28.43) is minimized. 

We now develop a neural network approach to this problem. First, we represent 
pA (x)pQ (x, y) as the network shown in Fig. 28.1, where a = exp[- 4 (v)2], b = 
pQ(x, y), and z = ab. For fixed y = yj, we compute zl,  z2, ..., z~ for x = xl, 2 2 ,  ..., xw, 
and determine Zi* = max[z~ ,  ..., z ~ ] .  Clearly, zi* equals the m a x ~ < ~ < ~ [ p ~ ( x i ) p ~  (xi, yj)] 
in (28.43). We then adjust the parameters 2 and o to  minimizethe squared error 

using a gradient descent algorithm. The details of this method is given as follows. 

A Neural Network Approach to the "Fuzzy Deconvolution Problem" 

Step 1: Make samples x, (i = 1,2 ,  ..., N) over the domain U and samples y, \ 
(j = 1,2,  ..., M )  over the domain V. If U and V are bounded, we usually make 
the samples uniformly distributed over U and V. Determine initial guesses 
Z(0) of Z and a(0) of 0. Sometimes, human experts can provide these initial 
guesses. If not, choose Z(0) randomly in U and choose a to be a reasonable 
positive number, for example, a = 1. Initialize j = 1. 
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Figure 28.1. Network representation of p~(x)p&(x, y). 

Step 2: Fix y  = y j  in the network of Fig. 28.1, and for x  = X I ,  2 2 ,  ..., X N  com- 
pute forward along the network to determine the corresponding z l ,  zz, ..., z ~ .  
Find i* such that zi* = max[z l ,  z2, .. ., zN] .  

Step 3: Update the parameters % and a using the gradient descent algorithm: 

where 

ei is given by (28.44), and k = 0,1,2,  .... 
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Step 4: Go to Step 2 with y = yj+l, and repeat for y = yl, y2, ..., y ~ ,  y1, ..., 
until the differences I5(k + 1) - ~ ( k )  1 and lo(k + 1) - a(k)  1 are smaller than 
a small threshold for a number of k's greater than M. 

The training algorithm (28.45) and (28.46) are obtained by using the chain rule: 

3 = 2e .% = -2ej && = -2e .b* Bh = -aejb a 
ae2 

az 3 az 3 az * * ; similar for . It  
can be proven that the above training algorithm guarantees that the total matching 
error x:, e: will decrease after every M steps of training. Because it is required 
that a > 0, in the implementation we need to choose a small constant E > 0 such 
that if o(k + 1) > E then keep a(k + 1) as computed by (28.46), and if o(k + 1) 5 .c 
then set a(k + 1) = E .  In this way we can guarantee a(k) 2 E for all k. 

We now simulate the algorithm for an example. 

Example 28.2. Consider a fuzzy relation that is characterized by the two fuzzy 
IF-THEN rules: 

RU('): I F x i s s m a l l , T H E N y i s n e a r l ,  (28.49) 

R U ( ~ )  : IF x i s  large, THEN y i s  near 0, (28.50) 

where "small," "large," "near 1," and "near 0" are fuzzy sets with membershit 
1 1 functions: ,Usmall (x) l+elo(.-l) 7 plarge (2) = 1+e10(-2+3) 1 h e a r 1  (Y) = e-lO(y-l) 

and pnearo(y) = e-log2, respectively. Using Mamdani's product implication, the 
R U ( ~ )  (i=1,2) are fuzzy relations in U x V with membership functions 

The final fuzzy relation Q is 

e-10(y-1)2 e-10y2 

= max 1 + e l O ( ~ - l )  ' 1 + e10(-~+3) I 
Now, for simplicity, we assume that o = 1 in (28.42), and our task is to determine 

5 for different pB(y)'s. We consider three cases of p ~ ( y ) :  (i) pB(y) = e-10(y-0.5)2 
(that is, y is near 0.5), (ii) ,uB(y) = ~ - ' O ( Y - ' ) ~  (that is, y is near I) ,  and (iii) 
p~ (y) = e-1°y2 (that is, y is near 0). We choose the domains U = [O, 41 and 
V = [O, 11. We uniformly sample U and V with N = 17 and M = 9 points, 
respectively, that is, (XI, x2,x3, ..., 217) = (0,0.25,0.5, ..., 4), and (yl, yz, ys, ..., y9) = 
(0,0.125,0.25, ..., 1). Figs.28.2-28.4 show the convergence procedures of Z(k) for 
different initial conditions for the three PB (y) cases (i)-(iii), respectively, where 
the horizontal axis represents the k in the training algorithm, and the vertical 
axis represents the %(k). From Figs. 28.2-28.4 we see that the training procedure 
converged in about 10 steps for all the three cases. 
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Figure 28.2. Convergence procedure of Z ( k )  for p y ( y )  = 
e-lo(y-055)2. 

Figure 28.3. Convergence procedure of ~ ( k )  for pY ( y )  = 
e - l o ( ~ - l ) 2 .  
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Figure 28.4. Convergence procedure of Z ( k )  for py(y )  = 
e - 1 0 ~ 2 ,  

From Fig. 28.2 we see that in this case all the 5(k) 's  for different initial ~ ( 0 ) ' s  
converged to the same value near 2. This is consistent with our intuition because 
from (28.49) and (28.50) we expect that if y  is near 0.5, that is, in the middle of 0 
and 1, then x should be in the middle of "small" and "large" which, by observing 
the membership functions p,,,n and p~ll,,,,, is somewhere around 2. Figures 28.3 
and 28.4 show that for " y  is near 1" and " y  is near O", the 5 ( k )  converged to a 
region of values for different initial conditions, not to a single point. This also is 
intuitively appealing because from (28.49) we see that if y  is near 1, then x should 
be small, which in Fig. 28.3 means somewhere between -0.3 and 0.8. Similarly, 
from (28.50) we see that if y  is near 0 ,  then x should be large, which in Fig. 28.4 
means somewhere between 3.2 and 4.3. In summary, all the solutions in the three 
cases are consistent with our intuition. 

I 

28.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The definition of "fuzzy deconvolution and fuzzy identification problems." 

How to obtain the particular solutions to the problems. 

The definition and computation of the solvability indices. 
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How to transform the problems of solving the fuzzy relation equations into 
a neural network framework and how to develop a training algorithm for 
computing the approximate solutions. 

A special book on fuzzy relation equations is Nola, Sessa, Pedrycz, and Sanchez 
[1989]. The book Pedrycz [I9931 also covered the fuzzy relation equations exten- 
sively. A good tutorial paper for fuzzy relation equations is Pedrycz [1991]. The 
neural network approach in this chapter was taken from Wang [1993b]. 

28.6 Exercises 

Exercise 28.1. Solve the following "fuzzy deconvolution problems" for the 
max-min composition. 

.9 .8 .7 
(a) A o [ 8 9 8 ] = 1.6 5 41 (28.54) 

.7 .8 .9 

( b )  A 0 1 '4 " O 1 = [.5 .5 4 .2] .2 .4 .5 .6 

Exercise 28.2. Solve the following "fuzzy identification problems" for the max- 
min composition. 

(a) [I .3 .5]  o Q = [.6 .5 .4] 

( b )  [.I .3 .5 .7] o Q = [.6 .5 .4 .3] (28.59) 

Exercise 28.3. Prove (28.36) in Theorem 28.3. 
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Exercise 28.4. Let P, Q and R be fuzzy relations in U x V, V x W and U x W, 
respectively, and F(U x V) be the set of all fuzzy relations in U x V. Define the 
solvability index of the fuzzy relation equation P o Q = R as 

6 =  sup eq t (PoQ,R)  
P E F ( U X V )  

Show that 

Exercise 28.5. Develop a neural network approach for solving the "fuzzy iden- 
tification problem." 



Chapter 29 

Fuzzy Arithmetic 

29.1 Fuzzy Numbers and the Decomposition Theorem 

In the fuzzy IF-THEN rules, the atomic fuzzy proposition, xi is A:, is often an 
imprecise characterization of numbers in the real line R, for example, "close to 5," 
"approximately 7," etc. Since fuzzy sets defined in R appear quite often in many 
applications, they deserve an in-depth study. Roughly speaking, a fuzzy number is 
a fuzzy set in R; but in order to perform meaningful arithmetric operations, we add 
some constraints. Specifically, we have the following definition. 

Definition 29.1. Let A be a fuzzy set in R. A is called a fuzzy number if: (i) 
A is normal, (ii) A is convex, (iii) A has a bounded support, and (iv) all a-cuts of 
A are closed intervals of R. 

We require a fuzzy number to be normal because our conception of real numbers 
close to r is fully satisfied by r itself, hence we should have p~ (r) = 1. The convexity 
and boundedness conditions allow us to define meaningful arithmetric operations 
for fuzzy numbers. 

Two special classes of fuzzy numbers often are used in practice; they are trian- 
gular and trapezoidal fuzzy numbers. A triangular fuzzy number A is a fuzzy set in 
R with the triangular membership function: 

Similarly, if a fuzzy set A in R has the trapezoidal membership function: 

it is called trapezoidal fuzzy number. It is easy to check that the triangular and 
trapezoidal fuzzy numbers satisfy the four conditions in Definition 29.1. 
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A useful approach to study the arithmetic operations of fuzzy numbers is to use 
the a-cuts of fuzzy numbers. Recall that the a-cut of a fuzzy set A in R is defined 
as 

A, = {x E R)PA(x) > a) (29.3) 

Now we show that a fuzzy set can be uniquely determined by its a-cuts. To make 
precise representation, we define fuzzy set A", in R with the membership function 

where IA,(x) is the indicator function of the (crisp) set A,, that is, IAa(x) = 1 
if x E A, and IA, (x) = 0 if x E R - A,. The following theorem, known as the 
Decomposition Theorem, states that the fuzzy set A equals the union of the fuzzy 
sets A", for all a E [0, 11. 

Theorem 29.1. (Decomposition Theorem) Let A and & be fuzzy sets in 
R with A, defined by (29.4). Then, 

where U denotes the standard fuzzy union (that is, sup over a E [O,l]). 

Proof: Let x be an arbitrary point in R and a = PA($). Then., 

For each a E (a, 11, we have pA(x) = a < a and thus x # A, which implies 
p~ (x) = 0. If a E [0, a], then PA(X) = a 2 a so that x E A, and from (29.4) we 
have (x) = a. Hence, 

- (x) = SUP a = a = p ~ ( x )  
PUae[o,l] A, 

(29.7) 
ff€[o,al 

Since x is arbitrary, (29.7) implies (29.5). 

From Theorem 29.1 we see that if we can determine the a-cuts of a fuzzy set for 
all a E [0, 11, we can specify the fuzzy set itself. Therefore, determining a fuzzy set 
is equivalent .to determining its a-cuts for all a E [O,l]. In the next two sections, 
we will use the a-cuts to define the arithmetic operations of fuzzy numbers. 

29.2 Addition and Subtraction of Fuzzy Numbers 

29.2.1 The a-Cut Method 

Let A and B be two fuzzy numbers and A, = [a;, a:], B, = [b;, b i ]  be their 
a-cuts. Then, the addition of  A and B,  A + B,  is a fuzzy number with its a-cuts 
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defined by 
(A + B) ,  = [a; + b;, a: + b:] 

for every a E [0, 11. Since a fuzzy set is completely determined by its a-cuts (The- 
orem 29.1), the fuzzy number A + B is well-defined by its a-cuts (29.8). 

Similarly, the subtraction of A and B ,  A - B, is a fuzzy number with its a-cuts 
defined by 

(A - B), = [min(a, - b;, a: - b:), max(a; - b;, a: - b:)] 

for every a E [0, I]. 

Example 29.1. Compute the addition and subtraction of the triangular fuzzy 
numbers A and B whose membership functions are 

For a given a E [O,l], the a-cuts of A and B are 

Hence, 
( A +  B), = [3a-2 ,4-3a]  

Since 3 a  - 2 and 4 - 3 a  are linear functions of a ,  A + B is also a triangular fuzzy 
number. By setting a = 0 and a = 1 in (29.13), we obtain 

which is plotted in Fig. 29.1. Similarly, we have 

(A - B), = [a - 2, -a] (29.15) 

and 
PA-~($1 = PA-B(X;  -2, -1,O) 

which is shown in Fig. 29.1. 

Another way to compute the addition and subtraction of fuzzy numbers is to 
use the extension principle. 

29.2.2 The Extension Principle Method 

Using the extension principle (Chapter 4), we can define the addition of fuzzy 
numbers A and B as 
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Figure 29.1. Addition and subtraction of the two fuzzy 
numbers in Example 29.1. 

where z E R and the sup,+,,, is taken over all x, y E R with x + y = z .  Similarly, 
we define 

P A - ~ ( 2 )  = SUP m i n [ ~ ~ ( x ) ,  PB (Y)] (29.18) 
x-,=z 

We now prove that this definition is equivalent to the a-cut method. 

Theorem 29.2. The extension principle method (29.17) and (29.18) is equiv- 
alent to the a-cut method (29.8) and (29.9); that is, they give the same fuzzy 
numbers A + B and A - B. 

Proof: First, note that the fuzzy sets A + B and A - B defined by (29.17) and 
(29.18) are fuzzy numbers (the proof is left as an exercise). Hence, according to 
Theorem 29.1 we only need to show that the a-cuts of A + B and A - B defined by 
(29.17) and (29.18) are given by (29.8) and (29.9), respectively. From (29.17) we 
see that for any x E A, = [a;, a:] and y E B, = [b;, b:], we have PA+B (z) 2 a if 
z = x + y; hence, [a; + b;, a: + b:] C_ (A+ B), because for any z E [a; + b;, a: + b:] 
we can find x E [a;, a:] and y E [b;, b i ]  such that z = x + y. Conversely, if 
z E R - [a; -t b;, a: + b:] and for any decomposition z = x + y, we have either 
x $! [a;,a$] or y $Z [b;, b$] so that PA+B(Z) = 0 < a according to (29.17). This 
means that for any z with PA+B(Z) 2 a, it must be true that z E [a; + b;, a; + b:]; 
that is, (A + B), 5 [a, + b;, a2 + b:]. Hence, we have (29.8). (29.9) can be proven 
in the same manner. 

Since a real number a is a special fuzzy number (with its membership function 
~ a ( x )  = 1 if x = a and p,(x) = 0 if z # a) ,  we have from (29.17) that A + a is a 
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fuzzy number with membership function 

P A + ~ ( z )  = PA(Z - a)  (29.19) 

That is, P ~ + ~ ( Z )  is obtained by shifting , u ~ ( z )  a distance of a. Similarly, A - a is 
a fuzzy number with membership function 

PA-, (2) = PA (2 + a) (29.20) 

Viewing 0 as a special fuzzy number, we have from (29.18) that 

Finally, we consider an example of computing the addition and subtraction of 
two fuzzy sets defined over a finite number of points. 

Example 29.2. Compute the addition and subtraction of the fuzzy sets: 

Using (29.17) and (29.18), we have 

29.3 Multiplication and Division of Fuzzy Numbers 

29.3.1 The a-Cut Method 

In classical interval analysis, the multiplication of intervals [a, b] and [c, d] is defined 
as 

[a, b] . [c, d] = [min(ac, ad, bc, bd), max(ac, ad, be, bd)] (29.26) 

If 0 $ [c, d], then the division of [a, b] and [c, dl is defined as 

We now define the multiplication and division of fuzzy numbers using their a-cuts 
and (29.26)-(29.27). 

Let A and B be fuzzy numbers and A, = [a;, a;] and B, = [b;, b;] be their 
a-cuts. Then, the multzpkication of A and B, A .  B,  is a fuzzy number with its 
a-cuts defined by 

(A . B), = [min(a; b; , a; b:, a: b;, a: b:), max(a; b; , a; b:, a: b; , a: b:)] (29.28) 
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for every a E [O,l]. If 0 6 [b;, b:] for all a E [0, 11, then the division of A and B ,  
A/B, is a fuzzy number with its a-cuts defined by 

(AIB), = [min(a;/b;, a,/b:, a:/b;, a:/b:), max(a,/b;, a,/b;,a:/b;, a;/b:)] 
(29.29) 

for every a E [0, 11. 

Example 29.3. Consider the fuzzy number A in Example 29.1 and B defined 
by 

CLB(X) = PB (2; 0.5,1,3) (29.30) 

We now compute A . B and A/B. First, note that the a-cuts A, = [a;, a:] = 
[a - 1 , l -  a] and B, = [b;, b:] = [(a  + 1)/2,3 - 2a]. Hence, 

max(a,b,,a,b:,a:b,,a$b:) = sib: = 2a2 - 5 a + 3  (29.32) 

and 
(A.  B), = [-2a2 + 5a  - 3, 2a2 - 5a  + 31 (29.33) 

From (28.33) we have 

which is illustrated in Fig. 29.2. Similarly, we have 

and 

(A/% = [(a  - 1)/(3 - 2a), 2(1- a ) / ( l +  a)] (29.37) 

From (29.37) we have 

(32+1) / (22+1)  for x < O  
' A / ~ ( ~ ) = {  (2-5)/(2+1) for X t O  

which is plotted in Fig. 29.2. 

29.3.2 The Extension Principle Method 

Similar to addition and subtraction of fuzzy numbers, we can use the extension 
principle to define A .  B and A/B. Specifically, the fuzzy numbers A - B and A/B 
are defined by 
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Figure 29.2. Multiplication and division of the two fuzzy 
numbers in Example 29.3. 

and 

respectively. It can be shown that (29.39) and (29.40) give the same fuzzy numbers 
as defined by (29.28) and (29.29), respectively. 

If B = b is a crisp number, then from (29.39) we have 

This gives the multiplication of a real number and a fuzzy number. 

29.4 Fuzzy Equations 

Let A, B and X be fuzzy numbers. It  is interesting to solve the fuzzy equations: 

and 
A . X = B  

where A, B are known, and X is unknown. That is, the problem is to determine 
fuzzy number X such that (29.42) or (29.43) is true for given fuzzy numbers A and 
B. 
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We first study how to solve (29.42). Let A, = [a;, a:], B, = [b;, b:] and 
X, = [x;, 221. According to the Decomposition Theorem, (29.42) is true if and 
only if 

[a;, 41 + [ x i  , x:] = [b, , b:l (29.44) 

for all a E (0, 11. Hence, a potential solution is given by 

X ,  = [xi, ~ $ 1  = [ b i  - a;, b: - a:] (29.45) 

In order for the X, in (29.45) to be qualified as a-cuts, the following two conditions 
must be satisfied: 

(i) b; - a; < b: - a 2  for every a E (0, 11 

+ -  + (ii) If a I p, then b; - a; 5 b j  - I b$ - a$ 5 ba 

Condition (i) guarantees that [b; - a;, b 2  - a:] is an interval, and condition (ii) 
ensures that [b; - a;, b; - a:] are nested intervals so that they are qualified as 
a-cuts of a fuzzy number. Therefore, if conditons (i) and (ii) are satisfied, then 
using the Decomposition Theorem we obtain the solution as 

where X, are fuzzy sets defined by 

Example 29.4. Let A and B be the triangular fuzzy numbers in Example 29.1. 
Then, from (29.12) we have a; = a - 1, a 2  = 1 - a ,  b; = 212 - 1 and b; = 3 - 2a. 
Hence, b; - a; = a and b 2  - a: = 2 - a. Since a 5 2 - a for a E (O,1] and 
a 5 /3 < 2 - p 5 2 - a if a 5 /3 5 1, conditions (i) and (ii) are satisfied. Therefore, 

from which we obtain the solution X as the triangular fuzzy number 

Next, we study the fuzzy equation (29.43). For simplicity, assume that A and 
B are fuzzy numbers in R+. Then (29.43) is equivalent to 

for all a E (0, 11. If the following two conditions are satisfied: 
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m (i) b, /a; I b$/a; for every a E (O,l] 

(ii) a < p implies b;/a; < bplap I b$/a$ I b:/a: 

then the solution X of (29.43) is given through its a-cuts 

+ + xo: = [ x i ,  321 = [bJa;, b, la,] 

Example 29.5. Consider the fuzzy equation (29.43) with pA (x) = pA (x; 3,4,5) 
and p ~ ( x )  = p ~ ( z ;  12,20,32). Then A, = [a+3,5-a] and B, = [8a+12,32-12aI. 
It is easy to verify that the two conditions above are satisfied, hence 

from which we obtain the solution as 

29.5 Fuzzy Ranking 

In fuzzy multiple attribute decision making (Chen and Hwang [1991]), the final 
scores of alternatives are represented by fuzzy numbers. In order to make a crisp 
choice among the alternatives, we need a method for comparing fuzzy numbers. 
However, unlike the real numbers in R that can be linearly ordered by <, fuzzy 
numbers cannot be linearly ordered. Intuitively, this is easy to understand. Consider 
the fuzzy numbers A and B in Fig. 29.3. Some people feel that B is larger than A 
because the center of B is larger than the center of A, while other people do not agree 
because B spreads widely over the small numbers while A is concentrated on large 
numbers. Clearly, the problem itself is ill-posed (that is, no crisp answer), and no 
fuzzy ranking method is perfect. In the literature, a large number of methods were 
proposed for ranking fuzzy numbers, with each method good for certain situations 
and bad for other situations. In Chen and Hwang [1992], some 20 fuzzy ranking 
methods were reviewed. In this section, we consider only two types of methods: the 
a-cut-based methods, and the Hamming distance-based methods. 

First, let us examize under what conditions can we confidently rank fuzzy num- 
bers. If the boundaries of the a-cuts A, = [a;, a;] and B, = [b;, b$] satisfy 
a; 5 b; and a$ < b; for all a E (0,1], then we can reasonably say that A is 
smaller than B. This gives us the first a-cuts-based method. 
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Figure 29.3. Ranking fuzzy numbers is an ill-posed prob- 
lem. 

a-cuts-based method 1: Let A and B be fuzzy numbers with a-cuts A, = 
[a;, a z ]  and B, = [b;, bk] .  We say A is smaller than B, denoted by A 5 B, 
if a; < b; and a: < b i  for all a E (0, 11. 

The advantage of this method is that the conclusion is less controversial. Its 
disadvantage is that it applies only to some obvious situations. For example, the A 
and B in Fig. 29.3 cannot be compared according this method, because b; 5 a; for 
small a but b; > a; for large a .  Hence, a weaker ranking method was proposed, 
as follows: 

a-cuts-based method 2: We say A < B if a 2  < b: for all a! E (c, 11, where 
c is a constant that is usually larger than 0.5. 

Clearly, this method emphasizes the numbers with large membership values. 
According to this method, we have A 5 B for the A and B in Fig. 29.3. 

Next, we consider the Hamming distance-based methods. The basic idea is 
to find a fuzzy number C such that A 5 C and B 5 C according to  the (quite 
reasonable but restrictive) a-cuts-based method 1. Then, if the Hamming distance 
between C and A is larger than the Hamming distance between C and B, we 
conclude that A 5 B. Clearly, the choice of C is not unique. Here we choose the C 
to be the fuzzy number MAX(A, B) which is defined by 
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Note that MAX(A, B)  is different from the fuzzy set with membership function 
max(,uA,pB). It is easy to show that A < MAX(A,B) and B < MAX(A, B) 
according to the a-cuts-based method 1. Let the Hamming distance dl (C, D) be 
defined as in (28.26) with p = 1, then we have the following fuzzy ranking method: 

Hamming distance-based method: We say A 5 B if dl(MAX(A, B), A) 2 
dl(MAX(A, B) ,  B). 

Example 29.6. Consider the fuzzy numbers 

From (29.54) we have 

which is plotted in heavy lines in Fig. 29.4. We can easily find that 

and 

Hence, the Hamming distance-based method gives A < B. If we use the a-cuts- 
based method 2 with c = 0.5, we have A 5 B. Clearly, the a-cuts-based method 1 
does not apply in this case. O 

29.6 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Fuzzy numbers and their addition, subtraction, multiplication, and division. 

Equivalence of the a-cut and extension principle methods for fuzzy number 
operations. 

Representation of a fuzzy set by its a-cuts (the Decomposition Theorem). 

How to solve the fuzzy equations. 
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Figure 29.4. Fuzzy numbers for Example 29.6. 

The a-cuts-based and Hamming distance-based methods for ranking fuzzy 
numbers. 

A special book on fuzzy arithmetic is Kaufmann and Gupta [1985]. A variety 
of fuzzy ranking methods were reviewed in Chen and Hwang [1992]. 

29.7 Exercises 

Exercise 29.1. Let A be a fuzzy set in R. Show that A is a fuzzy number if 
and only if there exists a closed interval [a, b] # 4 such that 

where l(x) is a function from (-m, a) to [ O , l ]  that is monotonic increasing, contin- 
uous from the right, and such that l(x) = 0 for x E (-co, wl); r(x) is a function 
from (b, oo) to [O, 11 that is monotonic decreasing, continuous from the left, and 
such that r(x) = 0 for x E ( ~ 2 ,  co). 

Exercise 29.2. For any fuzzy set A, show that 
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Exercise 29.3. Prove that the fuzzy sets A + B and A - B defined by (29.17) 
and (29.18) are fuzzy numbers. 

Exercise 29.4. Compute A + B , A  - B , A .  B , A / B  and M A X ( A , B )  for the 
fuzzy numbers A and B given as follows: 

(a) C L A ( X )  = P A ( X ;  -1,1731, P B ( X )  = I . L B ( X ;  1,3,  5)  

(b) P A ( X )  = P A ( X ;  -2,0,2),  P B ( X )  = P B ( X ;  2 ,4 ,6)  

Exercise 29.5. Show that the a-cut method and the extension principle method 
for multiplication and division of fuzzy numbers are equivalent. 

Exercise 29.6. Let A and B be the fuzzy numbers in Exercise 29.4 ((a) or 
(b)) and C be a triangular fuzzy number with pc(x)  = pC(x; 6,8,10).  Solve the 
following equations for X :  

(a) A + X  = B 

(b) B . X = C  

Exercise 29.7. Rank the three fuzzy numbers p~ ( x )  = p~ ( x ;  0 ,1 ,3 ,4 ) ,  p~ ( x )  = 
pB(x;  3 ,4 ,5 ) ,  and pc(x)  = pc(x;  4 ,5 ,6)  using the methods in Section 29.5. 

Exercise 29.8. Show that A 5 M A X ( A ,  B )  and B 5 M A X ( A ,  B )  according 
to the a-cuts-based method 1, where M A X ( A ,  B) is defined by (29.54). 



Chapter 30 

Fuzzy Linear Programming 

30.1 Classification of Fuzzy Linear Programming Problems 

Linear programming is the most natural mechanism for formulating a vast array of 
problems with modest effort. The popularity of linear programming is mainly due to 
two reasons: (i) many practical problems can be formulated as linear programming 
problems, and (ii) there are efficient methods (for example, the Simplex method, 
see Luenberger [1984]) for solving the linear programming problems. The classical 
linear programming problem is to find the values of unknown variables such that a 
linear objective function is maximized under the constraints represented by linear 
inequalities or equations. Specifically, the standard linear programming problem is 

maximize cx 

subject to Ax b 

x > 0 

where x = (21, ..., x,) E Rn are the decision variables to be determined, c = 
( 4 ,  . . . , c,) are called objective coeficients, and A = [aij] E Rmxn is called constraint 
matrix with its elements aij called constraint coeficients, and b = (bl, ..., b,)T are 
called resources. 

In many practical situations, it is quite restrictive to require the objective func- 
tion and the constraints to be specified in precise, crisp terms. In order to under- 
stand where and how fuzziness is applied in the linear programming problem, let 
us consider a simple example. 

Example 30.1 (Lai and Hwang [1992]). A toy company makes two kinds of 
toy dolls. Doll A is a high quality toy with a $0.4 per unit profit and doll B is of 
lower quality with a $0.3 per unit profit. Suppose that xl doll A and x2 doll B are 
produced each day, so the profit is 0.421 +0.3xz. Although doll A can make a higher 
profit per unit, it requires twice as many labor hours as doll B. If the total available 
labor hours are 500 hours per day, then we have the constraint 2x1 + x2 5 500. 
Additionally, the supply of material is sufficient for only 400 dolls per day (both A 
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and B combined), hence we have one more constraint XI + 2 2  5 400. In summary, 
the company manager formulates the production scheduling problem as follows: 

maximize 0.421 + 0 . 3 ~ ~  (prof it) 
subject to 2x1 + 2 2  I 500 (labor hours) (30.2) 

XI + x2 5 400 (materials) 

x1,x2 > 0 

However, the total available labor hours and materials may not be that precise, 
because the company manager can ask workers to work overtime and require ad- 
ditional materials from suppliers. Therefore, some tolerance would be put on the 
constraints in (30.2). For example, when the actual labor hours 2x1 +x2 is less than 
500, we say the constraint 2x1 + 2 2  5 500 is absolutely satisfied; when 2x1 + 2 2  is 
larger than 600, we say the constraint 2x1 + x2 5 500 is completely violated; and, 
when 2x1 + 2 2  lies between 500 and 600, we use a linear monotonic decreasing func- 
tion to represent the degree of satisfaction. Similarly, we can define a membership 
function to characterize the degree of satisfaction for the constraint XI + 2 2  5 400. 
Fig.30.1 shows these membership functions. In conclusion, the first kind of fuzziness 
appears in the specification of resources; we call this problem linear programming 
with fuzzy resources. 

Figure 30.1. The membership functions for labor hours 
and materials in Example 30.1. 

The second kind of fuzziness appears in the specification of the objective coef- 
ficients 0.4 and 0.3. Since the market changes constantly, it may not be certain 
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that the per unit profit of doll A and doll B are $0.4 and $0.3, respectively. The 
numbers could only be viewed as the most possible values. Therefore, it is rea- 
sonable to represent the objective coefficients as fuzzy numbers; this gives us the 
second type of fuzzy linear programming problem-linear programming with fuzzy 
objective coeficients. 

The third kind of fuzziness goes to the constraint coefficients. Because of the 
inconsistence of human workers, the ratio of labor hours in making doll A and doll 
B could only be viewed as around 2. Similarly, doll A and doll B may require 
slightly different amount of materials. Therefore, it is reasonable to represent the 
coefficients by fuzzy numbers; this gives the third fuzzy linear programming problem 
-linear programming with fuzzy constraint coeficients. 

In summary of the analysis in Example 30.1, we have the following three types 
of fuzzy linear programming problems: 

e Linear programming with fuzzy resources: 

m a x i m i z e  cx 

subject t o  ~ x g b  

x > o  

where the fuzzy inequality 2 is characterized by the membership functions 
like those in Fig. 30.1 (it will be precisely defined in Section 30.2). 

Linear programming with fuzzy objective coefficients: 

m a x i m i z e  Ex 

subject t o  Ax 5 b (30.4) 

x 2 0  

where E = (4, ..., cl,) is a vector of fuzzy numbers. 

Linear programming with fuzzy constraint coefficients: 

m a x i m i z e  cx 

subject t o  AX 5 b 

x > o  
- 

where A = [a&] is a matrix consisting of fuzzy numbers. 

Of course, the combinations of these three problems give more types of fuzzy 
linear programming problems. However, if we know how to solve these three prob- 
lems, other problems can be solved in a similar manner. In the next three sections, 
we will develop some basic approaches to solving these three problems, respectively. 
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30.2 Linear Programming with Fuzzy Resources 

Consider the linear progrgmming problem with fuzzy resources given by (30.3). Let 
ti(> 0) be the tolerance of the i'th resource bi, then the fuzzy inequality (Ax)i2bi 
is specified as (Ax)i 5 bi +$ti, where 8 E [0, 11. In other words, the fuzzy constraint 
(Ax)iSbi is defined as a fuzzy set i with membership function 

Therefore, the problem becomes to find x such that cx  and pi(x) for i = 1,2, ..., m 
are maximized. This is a multiple objective optimization problem. 

Werners [I9871 proposed the following method to solve this problem. First, solve 
the following two standard linear programming problems: 

maximize cx 

subject to   AX)^ < bi, i = 1,2,  ..., m 

x > 0 

maximize cx 

subject to 2 bi + t i ,  i = 1,2, ..., m (30.8) 
x > o  

Let x0 and x1 be the solutions of (30.7) and (30.8), respectively, and define zO = cxO 
and s1 = cxl. Then, the following membership function is defined to characterize 
the degree of optimality: 

Clearly, when cx 2 z1 we have po(x) = 1, which gives us maximum degree of 
optimality, when cx  5 z0 we have po(x) = 0, which gives minimum degree of 
optimality, and when cx  lies between z1 and zO the degree of optimality changes 
from 1 to 0. 

Since the constraints and objective function are represented by the membership 
functions (30.6) and (30.9), respectively, we can use the max-min method to solve 
this multiple objective optimization problem. Specifically, the problem becomes: 
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or equivalently 

maximize a 

subject t o  po(x) > a 
pi(x)  2 a ,  i = 1,2, ..., m 

a E [ O , l ] ,  x >_ 0 

Substituting (30.6) and (30.9) into (30.11), we conclude that the fuzzy resource 
linear programming problem (30.3) can be solved by solving the following standard 
linear programming problem: 

maximize a 

subject to  c x  2 z1 - (1 - a ) ( z l  - zO)  (30.12) 

  AX)^ 5 bi + ( 1  - a) t i ,  i = 1,2, ..., m 

a E [ O , l ] ,  x > 0 

Example  30.1 (Lai  and Hwang [1992]). Consider the following product-mix 
selection problem: 

maximize 4x1 + 5x2 + 9x3 + 11x4 (prof i t )  

subject to  g l ( x )  = X I  + 2 2  + 2 3  + x4115 (man - weeks) (30.13) 

g2(x) = 7x1 + 5x2 + 3x3 + 2x4380 (material Y )  

g 3 ( ~ )  = 3x1 + 5x2 + 10x3 + 15xq\100 (material Z)  

xl,X2,23,x4 2 0 

where the tolerances for man-weeks, materials Y and Z are tl = 5,t2 = 40 and 
t3 = 30, respectively. Solving (30.7) and (30.8), we obtain zO = 99.29 and z1 = 130. 
From (30.12) we have that the problem is equivalent to 

minimize 8 

subject to  z = 4x1 + 5x2 + 9x3 + 11x4 2 130 - 30.718 

91 ( x )  = X I  + 2 2  + 2 3  + xq 5 15 + 58 (30.14) 
9 2 ( ~ )  = 7x1 + 5x2 + 3x3 + 2x4 5 80 + 408 

g3(x) 3x1 + 5x2 + 10x3 + 15x4 5 100 + 308 

xl,x2,X3,x4 2 0,  8 E [ ( ) , I ]  

where 8 = 1 - a. The solution gives z* = 114.65 at 8 = 0.5. 

30.3 Linear Programming with Fuzzy Objective Coefficients 

Consider the linear programming problem with fuzzy objective coefficients given 
by (30.4). For simplicity and without loss of much generality, we assume that 
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the 6 ' s  are triangular fuzzy numbers with membership functions (x; cc ,  cf,  c:). 
Symbolically, let 6 = (c;, cf,  c:). Then (30.4) becomes 

maximize (c-x, cox, c+x) 

subject to Ax < b (30.15) 

where c- = (c;, ..., c;), c0 = (c!, ..., c:) and cf = (c r ,  ..., c i ) .  This is a multiple 
objective linear programming problem. A number of approaches were proposed in 
the literature to solve this problem (see Lai and Hwang [1992]); we now consider 
two approaches. 

The first approach is to simply combine the three objectives into a single objec- 
tive function. For example, c-x, cox and c+x can be combined into the so-called 
most-likely criterion (4C0+C-+C+)X 6 (Lai and Hwang [1992]). So (30.15) is converted 
into the following standard linear programming problem: 

4c0 + c- + c+ 
maximize 

6 
X 

subject to Ax < b (30.16) 

x 2 0  

Other weighted-sum strategies also may be used. 

The second approach starts with the observation that our goal is to maximize 
the triangular fuzzy number (c-x, cox, c+x). Therefore, instead of maximizing the 
three values c-x, cox and c'x simultaneously, we may maximize cox (the center), 
minimize cox - c-x (the left leg), and maximize cSx - cox (the right leg). In this 
way, the triangular membership function is pushed to the right. Thus, the problem 
(30.15) is changed to another multiple objective linear programming problem, as 
follows: 

minimize zl = (cO - c-)x 
0 maximize z2 = c x 

maximize zs = (c+ - cO)x (30.17) 

subjectto A x I b  

A method to solve this problem is to characterize the three objective functions by 
membership functions and then maximize their a-cuts. Specifically, we first get the 
solutions: 

z: = min(cO - c-)x, z? = max(cO - c-)x 
XEX XEX 

z: = max cox, z? = min cox 
XEX 

(30.18) 
XEX 

z: = max(c+ - cO)x, z r  = min(c+ - cO)x 
XEX XEX 
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where X = {XIAX 5 b, x > 0). The solutions zp are called Positive Ideal Solu- 
tion and z y  are called Negative Ideal Solution. Then, define the following three 
membership functions to characterize the three objectives: 

1 if (c+ - cO)x > z[ 
1lz3 ( 4  = 

(cf-c0)x-4' 
if zr 5 (C+ - CO)X 5 z; z r  -z," (30.21) 

0 if (c+-cO)x<z,N 

Finally, the problem is solved by solving the following standard linear programming 
problem: 

maximize a 

subject to pzi (x) > a, i = 1, 2,3  (30.22) 

A x I b ,  x > O  

30.4 Linear Programming with Fuzzy Constraint Coefficients 

Consider the linear programming problem with fuzzy constraint coefficients (30.5). 
Again, for simplicity and without loss of much generality, we assume that A = 
[a&] consists of triangular fuzzy numbers, that is, ayj = (a;, a$, a;) and A = 
(A-, A', A+), where A- = [a:] A0 = [a0.] and A+ = [a:.]. Then the problem v , z3 
becomes 

maximize cx 

subject to (A-x, AOx, A+x) 5 b (30.23) 

x 2 0 

Using the most-likely criterion as in (30.16), we convert (30.23) into the following 
standard linear programming problem: 

maximize cx 

subject to 
4A0+A- + A + x 5 b  

6 
(30.24) 
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Up to this point, we have solved the three basic fuzzy linear programming prob- 
lems (30.3)-(30.5). Other types of fuzzy linear programming problems are essentially 
the combination of the three basic problems and therefore can be solved using sim- 
ilar approaches. For example, consider the problem where all the coefficients are 
fuzzy numbers, that is, 

maximize Ex 

subject to  Ax 5 b ' 

x 2 0  

Assume that E ,  A and b consist of triangular fuzzy numbers, that is, 2: = (c-, cO, cf ), 
A = ( A p ,  AO, A+) and b = (b-, bO, bS), then (30.25) can be converted into the 
following multiple objective linear programming problem: 

minimize zl = (cO - c-)x 
0 maximize zz = c x 

maximize z3 = (cS - cO)x 

subject to A-x 5 b-, AOx 5 bO,ASx 5 bS 

x > O  

We can use the method for (30.17) to solve this problem. 

30.5 Comparison of Stochastic and Fuzzy Linear Programming 

Stochastic linear programming deals with situations where the coefficients c and A 
and the resources b are imprecise and described by random variables. Although 
stochastic programming has been extensively studied since the late 1950s, its ap- 
plications in solving real problems are limited. The main problems of stochastic 
programming, as pointed out by Lai and Hwang [1992], are: (i) lack of computa- 
tional efficiency, and (ii) inflexible probabilistic doctrines that might not be able 
to model the real imprecise meaning of decision makers. Fuzzy programming over- 
comes these two problems to some extent. In this section, we compare a particular 
stochastic programming method, the chance-constrained programming model, with 
the corresponding fuzzy programming method. 

The chance-constrained programming model, developed by Charnes and Cooper 
[1959], is defined as: 

maximize z = y x j  
j 
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where i j ,  tiij and bi are random variables, P{) denotes probability measure, and 
qi are small positive constants. The name "chance-constrained" follows from each 
constraint Cj aijzj 5 bi being realized with a minimum probability 1 - a i .  For 
illustrative purposes, we assume that aij and bi are Gaussian distributed with known 
means and variances. Let gi = Cj &ijxj - bi, then the probabilistic constraint in 
(30.27) can be treated as 

where cP is the CDF of the standard Gaussian distribution. Since aij and bi are 
Gaussian random variables, gi is also normally distributed with 

where x = (xl, ..., x,)~ and 

Let Sai be the normal value such that @(So;) = I - ai ,  then the constraint P{gi 5 
0) > 1 - ai is realized if and only if 

Substituting (30.30)-(30.31) into (30.33) and replacing Ej by its mean cj, we con- 
vert the stochastic linear programming problem into the following deterministic 
programming problem: 

maximize i = x %xj 
j 

subject to x E [ ~ ~ ~ ] x ~  - E[bi] + S,,X~D~X 5 0, Qi (30.34) 
j 

x j  > 0, tjj 

Clearly, (30.34) is a nonlinear programming problem that is not easy to solve. 
In fuzzy linear programming, on the other hand, we replace the coefficients and re- 
sources by triangular fuzzy numbers. From Sections 30.2-30.4 we see that the fuzzy 
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linear programming problems can be converted into the standard linear program- 
ming problem that is much easier to solve than the nonlinear programming problem 
(30.34). Therefore, fuzzy linear programming is more efficient than stochastic linear 
programming from a computational point of view. 

30.6 Summary and Further Readings 

In this chapter we have demonstrated the following: 

Where and how does fuzziness appear in linear programming and the classi- 
fication of fuzzy linear programming problems. 

How to solve the linear programming problem with fuzzy recources. 

e How to solve the linear programming problem with fuzzy objective coefficients. 

0 How to solve the linear programming problem with fuzzy constraint coeffi- 
cients. 

e The advantages of fuzzy linear programming over stochastic linear program- 
ming. 

A very good book on fuzzy mathematical programming is Lai and Hwang [1992]. 
The books Chen and Hwang [I9921 and Lai and Hwang [I9941 also covered related 
topics. For classical linear programming, see Luenberger [1984]. 

30.7 Exercises 

Exercise 30.1. Show that the linear programming problem (30.1) can be trans- 
formed into the following problem: 

maximize  c'x' 

subject to A'x' = b' 
x' > 0 

Exercise 30.2. Using graphics to find the solution to the linear programming 
problem (30.2). 

Exercise 30.3. Using graphics to find the solution to the following linear pro- 
gramming problem: 

minimize  x1 - 22.2 

subject to 3x1 - x2 > 1 

2x1 + 2 2  I 6 

X l 2 0 ,  O < X 2 5 2  
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Exercise 30.4. Show that the max-min optimization problem (30.10) is equiv- 
alent to the mathematical programming problem (30.11). 

Exercise 30.5. A company has been producing a highly profitable decorative 
material that came in two versions, x and y. Five different component ingredients 
were needed: golden thread, silk, velvet, silver thread, and nylon. The prices of 
these inputs and their technological contributions to both x and y are given in 
Table 30.1. The profit margins are $400 per unit of x and $300 per unit of y. 
In order to maintain these margins, the company does not allow "substantially 
more than $2,600" to be spent on the purchase of the components. Formulate the 
problem into a linear programming problem with fuzzy resources and solve it using 
the method in Section 30.2. 

Table 30.1. Inputs and technological coefficients 

Exercise 30.6. Solve the following fuzzy linear programming problems: 

(a) 

Resource 

golden thread 
silk 

velvet 
silver thread 

nylon 

maximize 5x1 + 4x2 

subject to ( 4 , 2 , 1 ) ~ 1  + (5,3,1)x2 _< (24,5,8) (30.37) 

(4,1,2)x1 + (1,0.5,1)~2 5 (12,6,3) 

x1,x2 2 0 

maximize 6x1 + 5x2 

subject to (5,3,2)x1 + (6,4,2)x2 _< (25,6,7) (30.38) 

(5,2,3)x1 + (2,1.5,1)~2 I (13,7,4) 

x1,x2 L 0 

Technological coefficients 
X Y 
4 0 
2 6 

12 4 
0 3 
4 4 

Exercise 30.7. Develop one or two methods that are different from those in 
Section 30.3 to solve the linear programming problem with fuzzy objective coeffi- 
cients. 

PriceJunit 

30 
40 
9.5 
20 
10 
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Exercise 30.8. Develop one or two methods that are different from those in 
Section 30.4 to solve the linear programming problem with fuzzy constraint coeffi- 
cients. 

Exercise 30.9. Can you find some disadvantages of fuzzy linear programming 
over stochastic linear programming? Explain your answer. 



Chapter 31 

Possibility Theory 

31.1 Introduction 

Possibility theory was initialized by Zadeh [I9781 as a complement to probability 
theory to deal with uncertainty. The justification for possibility theory was best 
stated by Zadeh [1978]: 

The pioneering work of Wiener and Shannon on the statistical theory 
of communication has led to a universal acceptance of the belief that 
information is intrinsically statistical in nature and, as such, must 
be dealt with by the methods provided by probability theory. 

Unquestionably, the statistical point of view has contributed deep 
insights into the fundamental processes involved in the coding, 
transmission and reception of data and played a key role in the 
development of modern communication, detection and telemetering 
systems. In recent years, however, a number of other important 
applications have come to the fore in which the major issues center 
not on the transmission of information but on its meaning. In such 
applications, what matters is the ability to answer questions relating 
to information that is stored in a database as in natural language 
processing, knowledge representation, speech recognition, robotics, 
medical diagnosis, analysis of rare events, decision-making under 
uncertainty, picture analysis, information retrieval and related 
areas. 

... our main concern is with the meanlng of information -- rather 
than with its measure -- the proper framework for information 
analysis is possibilistic rather than probabilistic in nature, thus 
implying that what is needed for such an analysis is not probability 
theory but an analogous -- and yet different -- theory which might be 
called the theory of possibility. 

Since Zadeh [1978], there has been much research on possibility theory. There 
are two approaches to possibility theory: one, proposed by Zadeh [1978], was to 
introduce possibility theory as an extension of fuzzy set theory; the other, taken by 
Klir and Folger [I9881 and others, was to introduce possibility theory in the frame- 
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work of Dempster-Shafer's theory of evidence. The first approach is intuitively 
plausible and is closely related to the original motivation for introducing possibility 
theory-representing the meaning of information. The second approach puts pos- 
sibility theory on an axiomatic basis so that in-depth studies can be pursued. In 
the next two sections, we will introduce the basic ideas of these two approaches, 
respectively. 

31.2 The Intuitive Approach to Possibility 

31.2.1 Possibility Distributions and Possibility Measures 

This approach starts with the concept of fuzzy restriction. Let x be a variable that 
takes values in the universe of discourse U and A be a fuzzy set in U .  Then the 
proposition "x is A" can be interpreted as putting a fuzzy restriction on  x and this 
restriction is characterized by the membership function PA. In other words, we can 
interpret p A ( u )  as the degree of possibility that x = u. For example, let x be a 
person's age and A be the fuzzy set "Young." Suppose we know that "the person is 
Young" (x  is A), then ~ ~ ( 3 0 )  could be interpreted as the degree of possibility that 
the person's age is 30. Formally, we have the following definition. 

Definition 31.1. Given fuzzy set A in U and the proposition "x is A," the 
possibility distribution associated with x, denoted by n,, is defined to be numerically 
equal to the membership function of A, that is, 

for all u E U .  

As an example, consider the fuzzy set "small integer7' defined as 

small  integer = 111 + 112 + 0.813 + 0.614 + 0.415 + 0.216 (31.2) 

Then, the proposition "x is a small integer" associates x with the possibility distri- 
bution 

n, = 1 /1+  112 + 0.8/3 $0.614 + 0.4/5 + 0.216 (31.3) 

where the term such as 0.813 signifies that the possibility that x is 3, given that "x 
is a small integer," is 0.8. 

Now let x be a person's age and A be the fuzzy set "Young." Given "x is A," 
we know that the possibility of x = 30 equals ~ ~ ( 3 0 ) .  Sometimes, we may ask the 
question: "What is the possibility that the person's age is between 25 and 35, given 
that the person is Young?" One eligible answer to this question is S U ~ , ~ [ ~ ~ , ~ ~ ]  p ~ ( u ) .  
The generalization of this example gives the concept of possibility measure. 

Definition 31.2. Let C be a crisp subset of U and r, be a possibility distri- 
bution associated with x.  The possibility measure of x belonging to C, denoted by 
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Pos, (C), is defined by 
POS, (C) = SUP n, (u) (31.4) 

u E C  

As an illustration of possibility measure, consider the fuzzy set %mall integer" 
defined by (31.2) and give the proposition "x is a small integer." Let C = {3,4,5), 
then the possibility measure of x equals 3,4 or 5 is 

Pos,(C) = max nZ(u) 
U € I 3 , 4 , 5 )  

= max[0.8,0.6,0.4] = 0.8 

31.2.2 Marginal Possibility Distribution and Noninteractiveness 

Let x = (xl,  ..., x,) be a vector taking values in U = Ul x . . . x U, and A be a 
fuzzy set (relation) in U with membership function p ~ ( u ~ ,  ..., u,). Then, given the 
proposition "x is A we have from Definition 31.1 that the possibility distribution 
of x is T, = P A ;  we call this n, the basic distribution. 

Now let q = (il, ..., ik) be a subsequence of (1, ..., n) and x(,) = (xil, ..., xik). The 
marginal possibility distribution associated with x(,), denoted by T,(~, , is defined as 
the projection of T, on U(,) = Ui, x . . . x Ui,, that is, 

where u(,) = (uil, ..., Uik), q' = ( j l ,  ..., jm) is a subsequence of (1, ..., n), which is 
complementary to q, u(,t) = (ujl, ..., uj, ) and U(,,) = Uj, x . . . x Ujm . For example, 
if n = 5 and q = ( i ~ , i a )  = (2,4), then q' = ( j l , j2 ,  j3) = (1,3,5). 

As a simple illustration, assume that U = Ul x U2 x U3 with Ul = U2 = U3 = 
{a, b) and 

nx(~1,u2 ,us)  =0.8/(a,a,a) + l / (a ,a ,b)  +0.6/(b,a,a) +0.2/ (b ,a ,b)+0.5 / (b ,b ,b)  
(31.7) 

Then, the marginal possibility distribution of (xl,  x2) is 

By analogy with the concept of independence of random variables, the variables 
x(,) and x(,,) are called noninteractive if and only if 
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where q and q' are defined as before. Because of the min operation, an increase in 
the possibility of ul cannot be compensated by a decrease in the possibility of u2 
and vice versa; this is the intuitive meaning of noninteractiveness. 

31.2.3 Conditional Possibility Distribution 

Again, by analogy with the concept of conditional probability distributions, we 
can define conditional possibility distributions in the theory of possibility. As in 
the previous subsection, let q = (il, ..., ik) and q' = (jl, ..., j,) be complementary 
subsequences of (1, ..., n) and (ajl, ..., aj,) be a given point in Uj, x . . . x Ujm . Then, 
the conditional possibility distribution of xi,) given xiqr) = (ajl, ..., aj,) is defined 
as 

For the possibility distribution (31.7), as an example, we have 

In (31.10), the conditional possibility distribution is conditioned on a singleton 
value ~ ( ~ 1 )  = (aj1, ..., aj,). Now suppose xiql) is only fuzzily restricted by the 
possibility distribution n2(q1), what is the conditional possibility distribution of x(,) 
given xiqt)? In Zadeh [1978], this conditional possibility distribution is defined as 
follows. First, cylindrically extend xi,,) from Uj, x . . . x Uj, to UI x . . . x Un, that 
is, 

nz~(~, )  ( ~ 1 ,  ...> ~ n )  = TZ(,I) (ujl, ...,ujm) (31.13) 

where %(,I) is the cylindrical extension of xi,). Then, the conditional possibility 
distribution of x(,) given xi,,) is defined as 

TZ(,) ( u z ~ ,  ..., uzk Ixiq')) = SUP m i n [ n z ( ~ ~ ,  ..., u n ) , n ~ ( ~ , )  ( ~ 1 ,  .-., un)] 
u(qf)EU31 X . , . X U j m  

(31.14) 
where ui,,) = (uJ1, . . . , u J m )  That is, we take the intersection of n2 and 7 r ~ ( ~ , )  and 
define the conditional possibility distribution as the projection of this intersection 
onto U,, x - .  . x U,, . 

Consider, again, the possibility distribution T$ of (31.7) and let 

Then, the cylindrical extension of (XI , x2) is 
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Substituting (31.16) and (31.7) in (31.14), we obtain 

n,, ( u Q ( x ~ , x ~ )  = 0 . 6 1 ~  + 0.5/b 

31.3 The Axiomatic Approach to Possibility 

In Klir and Folger [I9881 and Klir and Yuan [1995], possibility theory was developed 
within the framework of Dempster-Shafer's evidence theory. Since this approach was 
built on an axiomatic basis, a variety of mathematical properties can be derived. In 
evidence theory, there are two important measures: plausibility measure and belief 
measure; the basic concepts in possibility theory were defined through these two 
measures. 

31.3.1 Plausibility and Belief Measures 

In the definition of probability measures, there is a strong requirement-the addi- 
tivity axiom, that is, 

where Pro(.) denotes probability measure, and A and B are subsets of the domain 
U such that A n  B = $ (empty set). Plausibility and belief measures are defined by 
relaxing this additivity axiom in different ways. Specifically, we have the following 
definitions. 

Definition 31.3. Given a universal set U and a nonempty family F of subsets 
of U ,  a plausibility measure is a function P1 : F -+ [0,1] such that 

(pl)  PI($) = 0 and PE(U) = 1 (boundary conditions) 

(p2) for all Ai E F, 

(31.19) 
(subadditivity) 

(p3) for any increasing sequence AI C Az C . . . in F, if UEl Ai E F, then 

lim PI (Ai) = ~1 (U Ai) 
i-im i= 1 

(continuity from below) 

Definition 31.4. Given a universal set U and a nonempty family .F of subsets 
of U ,  a belief measure is a function Be1 : 3 --+ [0,1] such that 
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(pl) Bel(4) = 0 and Bel(U) = 1 (boundary conditions) 

(p2) for all Ai E F, 

Bel(A1u. . uA,) 2 ~ e l ( A j ) - C  Bel(AjnAt)+. . . + ( - - l ) " + ' ~ e l ( ~ ~ n - .  nA,) 
j j<k 

(31.21) 
(superadditivity) 

(p3) for any decreasing sequence A1 > Az > . . . in F, if nzl Ai E F, then 

00 

lim Be1 (Ai) =  el ( n Ai) (31.22) 
i-tw i=l 

(continuity from above) 

Letting n = 2,A1 = A, and A2 = A in (31.19) and (31.21), we obtain the 
following basic inequalities of plausibility and belief measures: 

P1 (A) + Pl  (A) 2 1 

Bel(A) + Bel(A) 5 1 

Furthermore, it can be shown that plausibility and belief measures are related 
through 

PI (A) +  el (A) = 1 (31.25) 

Hence, we can say that plausibility and belief measures are complementary. Plausi- 
bility and belief measures also are known as upper and lower probabilities, because 
it can be shown that 

Eel (A) _< Pro(A) 5 P1 (A) (31.26) 

Evidence theory is a very rich field and interesting readers are referred to Shafer 
[I9761 and Guan and Bell [1991]. 

31.3.2 Possibility and Necessity Measures 

In the intuitive approach in Section 31.2, possibility distributions are induced by 
membership functions of fuzzy sets and possibility measures are defined according to 
the possibility distributions. In the axiomatic approach here, possibility measures 
are defined as a special plausibility measure, and possibility distributions are derived 
from the possibility measures. Since plausibility measure has a complementary belief 
measure in the sense of (31.25), the so-called necessity measure was introduced to 
represent the complement of possibility measure. Specifically, we have the following 
definitions. 
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Definition 31.5. A possibility measure Pos : 3 + [0,1] is defined as a special 
plausibility measure with the subadditivity condition (31.19) replaced by 

where K is an arbitrary index set, and UkEK Ak E F. 
Definition 31.6. A necessity measure Nee : F -+ [0,1] is defined as a special 

belief measure with the superadditivity condition (31.21) replaced by 

where K is an arbitrary index set, and nkEK Ak E F. 
Since possibility and necessity measures are special plausibility and belief mea- 

sures, respectively, (31.23)-(31.25) are satisfied, that is, 

It can be shown that for every possibility measure Pos on 3 there exists a function 
n : U -+ [O, 11 such that 

Pos (A) = sup n(x) 
xEA 

for any A E 3. This n is defined as the possibility distribution. That is, in this 
approach possibility distributions are induced by possibility measures. 

In addition to  (31.29)-(31.31), possibility and necessity measures have some 
interesting properties. For example, 

where (31.33) is obtained from 1 = Pos(A U A) = max[Pos(A), Pos(A)], and 
(31.34) is obtained from 0 = Nec(A n A) = min[Nec(A), Nee(A)]. Furthermore, 
from (31.31) and (31.33)-(31.34) we have that Pos(A) < 1 implies Nec(A) = 0 
and that Nec(A) > 0 implies Pos(A) = 1. Indeed, if Pos(A) < 1, then from 
(31.33) we have Pos(A) = 1 and hence, Nec(A) = 1 - POS(A) = 0 (using (31.31)). 
Similarly, Nec(A) > 0 implies ~ e c ( A )  = 0 (from (31.34)) and therefore Pos(A) = 
1 - Nee(A) = 1 (from (31.31)). 

Since the possibility and necessity measures are defined on an axiomatic basis, 
a variety of properties can be derived; see Klir and Yuan [I9951 and Dobois and 
Prade [1988]. This gives possibility theory a rich content. 
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31.4 Possibility versus Probability 

31.4.1 The Endless Debate 

This book seems incomplete without a discussion on the possibility (fuzziness) ver- 
sus probability issue. Indeed, this is the most controversial topic around fuzzy 
theory and has sparked very intensive debate in the past. To make the story more 
interesting, we classify the debate into three rounds. 

The debate began with the possibilists'l argument that probability theory is not 
suitable to deal with uncertainties in natural languages. Probabilists do not agree. 
Probability theory, with its hundreds of years of history, is rich in theory and very 
successful in application. Probabilists argued that the membership function of a 
fuzzy set can be interpreted in terms of subjective probability (Loginov [1966]). In 
the 1980s, probabilists lunched a number of offences with the position papers Lindley 
[1982], Lindley [1987], and Cheeseman [1988], followed by discussions published in 
statistical journals. The conclusion was: "anything fuzzy can do, probability can do 
it equally well or better." Possibilists did not put an effective defense line against 
these strong offences, such that at the end of the first round of debate, probabilists 
had a total upper hand and fuzzy theory was badly treated or simply ignored in 
the following years. 

After losing the first round of debate, possibilists, who were mostly engineers, 
switched their attention to engineering applications of fuzzy theory. Indeed, one 
could argue against the principles of a theory, but it would be very unconvincing if 
one tries to argue with solid applications. With the successes of fuzzy controllers in 
home electronics and industrial process control, possibilists lunched a major offense 
by publishing a special issue of the IEEE Trans. on Fuzzy Systems (Vol. 2, No. 2, 
1994) on fuzziness versus probability. The conclusion was: "the two theories are 
complementary, and they deal with different types of uncertainties." Possibilists 
had an upper hand this time; the consequence is that the "ignoring" period of fuzzy 
theory was over and many scientists and engineers alike began to look at fuzzy 
theory seriously. 

The third round of debate has just begun with the publication of a position pa- 
per by Laviolette, Seaman, Barrett and Woodall [I9951 followed by six discussions 
written by mostly possibilists. The position paper laid out fuzzy and probability 
models side by side and compared the strengths and weaknesses of each. Although 
the two parties still had major differences, the atmosphere was much more cooper- 
ative. In the concluding remarks, Laviolette, Seaman, Barrett and Woodall [I9951 
wrote: 

lWe call proponents of fuzzy theory possibilists and proponents of probability theory pvoba- 
bilists; the boundary is, however, often fuzzy. 
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Although we have serious reservations about some philosophical 
tenets of EST [fuzzy set theory], we do not claim that the theory has 
been useless. The well-documented successful applications, 
particularly in control theory, show that EST can work if carefully 
applied. ... Rather, we take a skeptical view, in that so far we have 
found no instances in which EST is uniquely useful -- that is, no 
solutions using EST that could not have been achieved at least as 
effectively as using probability and statistics. 

This round of debate is currently going on and we will definitely see more debate 
in the future. 

Since fuzziness versus probability is a very controversial issue, we think the best 
we can do is to list the major differences between the two theories and to let the 
reader judge the arguments. 

31.4.2 Major Differences between the Two Theories 

We avoid discussing philosophical differences between the two theories, because any 
arguments in this category will spark controversy; interested readers are referred 
to the articles mentioned in the previous subsection. The following differences are 
mainly technical differences. 

Difference 1: Although both theories deal with uncertainty, the practical prob- 
lems they intend to solve are quite different. Fuzzy theory, on one hand, tries to 
formulate human reasoning and perceptions and therefore targets problems in areas 
such as industrial process control, pattern recognition, group decision making, etc., 
where human factors have a major impact. Probability theory, on the other hand, 
concentrates on such areas as statistical mechanics, data analysis, communications 
systems, etc., where human reasoning and perceptions do not play a major role. 

Although probabilists claimed that probability could be used to formulate hu- 
man knowledge if one wants to, the details have never been developed to the scale 
that fuzzy theory provides. In fact, the mainstream probabilists try to avoid mod- 
eling human behavior, as stated in Bernardo and Smith [1994]: 

It is important to recognize that the axioms we shall present are 
prescriptive, not descriptive. Thus they do not purport to describe 
the ways in which individuals actually do behave in formulating 
problems or making choices, neither do they assert, on some presumed 
'ethical' basis, the ways in which individuals should behave. The 
axioms simply prescribe constraints which it seems to us imperative to 
acknowledge in those situations where an individual aspires to choose 
among alternatives in such a way to avoid certain forms of behavioural 
inconsistency. (p.23) 

Consequently, although the two parties claim to deal with the same issue- 
uncertainty, the problems they really work on are quite different. 
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Difference 2: Fuzzy set theory discards the law of the excluded middle, whereas 
probability theory is built on classical set theory, in which the law of the excluded 
middle is fundamental. Due to this fundamental difference, the technical contents 
of the two theories are quite different. 

Difference 3: Possibility measures, as defined in Section 31.3, replace the addi- 
tivity axiom of probability (31.18) with the weaker subadditivity condition (31.19). 
This fundamental difference results in a sequence of other differences between pos- 
sibility and probability theories, some of which were shown in Section 31.3. 

Difference 4: From an application point of view, the computational algorithms 
resulting from the two theories and the information required to implement them 
usually are quite different, even if the algorithms are developed to solve the same 
problem. For example, many problems with using probability in artificial intelli- 
gence models come from multiplying two probabilities that are not independent; in 
fuzzy theory, this dependency information is not required. 

There are many more differences aad endless arguments. Because this book is 
written mainly for engineers or future engineers, it might be helpful to comment on 
how to look at the debate from an engineer's perspective. 

31.4.3 How to View the Debate from an Engineer's Perspective 

Why has there been such intensive debate on fuzziness versus probability? Besides 
the philosophical and technical differences, it might be helpful to notice the profes- 
sional differences between scientists (most probabilists are scientists) and engineers 
(most possibilists are engineers). In some sense, the business of a scientist is to  be 
skeptical of all claims, whereas a good engineer should be open minded and keeps 
all options open. Indeed, an ultimate goal of science is to discover the fundamental 
principles governing the universe; whereas the task of engineering is to build up 
things that did not exist in the universe before. Consequently, scientists are usu- 
ally critical and concentrate on finding the defects in claims or theories; whereas 
engineers are typically pragmatists and use whatever methods that can best solve 
the problem. Therefore, from an engineer's perspective, we should definitely use 
the techniques provided by fuzzy theory as long as they can help us to produce 
good products, no matter what probabilists say about fuzzy theory. If some day 
in the future probabilists provide design tools for problems that are now solved by 
fuzzy techniques, we should definitely try them and compare them with their fuzzy 
counterparts. We would like to conclude this section, and this book, by quoting 
from Zadeh [1995]: 

In many cases there is more to be gained from cooperation than from 
arguments over which methodology is best. A case in point is the 
concept of soft computing. Soft computing is not a methodology 
-- it is a partnership of methodologies that function effectively in 
an environment of imprecision and/or uncertainty and are aimed at 
exploiting the tolerance for imprecision, uncertainty, and partial 
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truth to achieve tractability, robustness, and low solution costs. At 
this juncture, the principal constituents of soft computing are fuzzy 
logic, neurocomputing, and probabilistic reasoning, with the latter 
subsuming genetic algorithms, evidential reasoning, and parts of 
learning and chaos theories. 

31.5 Summary and Further Readings 

In this chapter we have demonstrated the following: 

The induction of possibility distributions from membership functions of,fuzzy 
sets. 

The concepts of possibility measures, marginal and conditional possibility 
distributions, and noninteractiveness, based on the possibility distributions 
induced from membership functions. 

The concepts of plausibility and belief measures and their relationship. 

The induction of possibility and necessity measures from the plausibility and 
belief measures and their properties. 

The similarities and differences between probability theory and fuzzy set the- 
ory. 

A special book on possibility theory is Dubois and Prade [1988]. The intuitive 
approach to possibility was taken from Zadeh [1978]. The details of the axiomatic 
approach to possibility can be found in Klir and Folger [I9881 and Klir and Yuan 
[1995]. The debate on fuzziness versus probability appeared in a number of special 
issues in statistics or fuzzy journals, for example, in International Statistical Re- 
view (1982), Statistical Science (1987), IEEE Trans. on Fuzzy Systems (1994) and 
Technometrics (1995). 

31.6 Exercises 

Exercise 31.1. Consider the possibility distribution T ,  of (31.7) and find the 
conditional possibility distributions of x, given: 

(a) 7r(,,,z3) ( ~ 1 ,  ~ 3 )  = 0.2/(a, a) + 0.9/(a7 b) + 0.7/(b, b) 

(b) n(,,,,,) ( ~ 2 ,  us) = 0.8/(a, a) + 0.2/(b, a )  

(c) xx3 ( ~ 3 )  = 0.6/a + 0 . 5 / b  

(dl T x ,  ( ~ 1 )  = 0.6/a 

Exercise 31.2. Given two noninteractive marginal possibility distributions 
xz = (1, .8, .5) and x = (1, .7) on sets X = {a, b, c )  and Y = {a ,  p),  respectively, 
determine the corresponding basic distribution. 
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Exercise 31.3. Repeat Exercise 31.2 for the following marginal possibility 
distributions: 

(a) .irz = (1,.7,.2) o n X  = {a,b,c)  and^, = (1,1,.4) o n Y  = { a , p , r )  

(b) .ir, = (1, .9, .6, .2) on X = {a, b,  c, d )  and nu = (1, .6) on Y = {a, p) 
Exercise 31.4. Prove that plausibility and belief measures are complement, 

that is, prove (31.25). 

Exercise 31.5. Prove that probability measure is bounded by plausibility and 
belief measures, that is, prove the truth of (31.26). 

Exercise 31.6. Show that possibility and necessity measures are special cases 
of plausibility and belief measures, respectively. 

Exercise 31.7. Let the possibility measure Pos be defined in Definition 31.5. 
Show that there exists a function .ir : U -+ [O,  11 such that (31.32) is true. 

Exercise 31.8. Find an example that shows that possibility and objective 
probability are different. 
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